Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Expert Rev Proteomics ; 15(12): 967-982, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30348024

RESUMO

INTRODUCTION: Metalloproteinases play key roles in health and disease, by generating novel proteoforms with variable structure and function. Areas covered: This review focuses on the role of endogenous [a Disintegrin and Metalloproteinase (ADAMs), ADAMs with thrombospondin motifs (ADAMTS), and matrix metalloproteinases (MMPs)] and exogenous metalloproteinases in various disease conditions, and describes the application of mass spectrometry-based proteomics to detect qualitative and quantitative changes in protein profiles in tissues and body fluids in disease. Emphasis is placed on the proteomic analysis of exudates collected from affected tissues, including methods that enrich newly generated protein fragments derived from proteolysis in cells, stroma, or extracellular matrix. The use of proteomic analysis of exudates in the study of the local tissue damage induced by metalloproteinases derived from viperid snake venoms is discussed, particularly in relation to extracellular matrix degradation and to the overall pathology of these envenomings. Expert commentary: The information provided by these proteomics approaches is paving the way for the identification of biomarkers based on particular proteolytic signatures associated with different pathologies. Together with other methodological approaches, a comprehensive view of the mechanisms and dynamics of diseases can be achieved. Such basis of knowledge allows for the design of novel diagnostic and therapeutic approaches within the frame of 'precision' or 'personalized' medicine.


Assuntos
Metaloproteases/análise , Técnicas de Diagnóstico Molecular/métodos , Proteômica/métodos , Mordeduras de Serpentes/metabolismo , Biomarcadores/análise , Biomarcadores/metabolismo , Exsudatos e Transudatos/química , Exsudatos e Transudatos/metabolismo , Humanos , Metaloproteases/metabolismo , Mordeduras de Serpentes/patologia
2.
J Proteome Res ; 13(11): 4739-51, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25244421

RESUMO

Following initial transformation, tumorigenesis, growth, invasion, and metastasis involves a complex interaction between the transformed tissue and the host, particularly in the microenvironment adjacent to the developing tumor. The tumor microenvironment itself is a unique outcome of the host reacting to the tumor and perhaps the tumor reacting to the host and in turn the tumor altering the host's response to give rise to an environment that ultimately promotes tumor progression. The tumor-adjacent stromal, sometimes referred to as "reactive stromal" or the desmoplastic stroma, has received some investigative studies, but it is incomplete, and likely different tumors promote a varied response and hence different reactive stroma. In this study, we have investigated the proteomics of the host response, both in vitro and in vivo, to breast epithelial cancer, in the former using tissue culture and in the latter laser microdissection of stromal tissue both adjacent and distal to breast invasive ductal cancer (IDC). From proteomic analysis of in vitro tissue culture studies, we observed that the stroma produced is related to the invasiveness of the stimulating breast cancer cell lines but different from that observed from the stromal proteome of archival tissue. In vivo we have identified several potential markers of a reactive stroma. Furthermore, we observed that the proteome of tumor-adjacent stroma differs from that of tumor-distal stroma. The proteomic description of human breast IDC stroma may serve to enhance our understanding of the role of stroma in the progression of cancer and may suggest potential mechanisms of therapeutic interdiction.


Assuntos
Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Proteoma/metabolismo , Células Estromais/metabolismo , Microambiente Tumoral/fisiologia , Cromatografia Líquida , Biologia Computacional , Feminino , Humanos , Imuno-Histoquímica , Espectrometria de Massas , Proteômica/métodos
3.
Biomolecules ; 14(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38540699

RESUMO

Viperid snake venoms induce severe tissue damage, characterized by the direct toxic action of venom components, i.e., phospholipases A2 (PLA2s) and metalloproteinases (SVMPs), concomitantly with the onset of endogenous inflammatory processes, in an intricate scenario of tissue alterations. Understanding the expression of relevant genes in muscle tissue will provide valuable insights into the undergoing pathological and inflammatory processes. In this study, we have used the Nanostring technology to evaluate the patterns of gene expression in mouse skeletal muscle 1 h, 6 h, and 24 h after injection of the venoms of Bothrops asper and Daboia russelii, two medically relevant species in Latin America and Asia, respectively, with somewhat different clinical manifestations. The dose of venoms injected (30 µg) induced local pathological effects and inflammation in muscle tissue. We focused our analysis on genes related to extracellular matrix (ECM) metabolism, immune system, programmed cell death, and autophagy. The results revealed a complex pattern of expression of genes. Regarding ECM metabolism and regulation, up-regulated genes included proteinase inhibitor Serpine 1, thrombospondin 1, collagens 1A1 and 4A1 (at 1 h in the case of B. asper), TIMP1, MMP-3 (at 24 h), and lysil oxidase (LOX). In contrast, collagen chains 5A3 and 5A1 were down-regulated, especially at 6 h. Transforming growth factor ß (TGF-ß) and several genes related to myofibroblast regulation were also up-regulated, which might be related to the development of fibrosis. Several genes related to cytokine and chemokine synthesis and regulation and NFκB signaling were also up-regulated. Our observations show a variable expression of genes associated with programmed cell death and autophagy, thus revealing a hitherto unknown role of autophagy in tissue affected by snake venoms. These results provide clues to understanding the complex pattern of gene expression in tissue affected by viperid snake venoms, which likely impacts the final pathophysiology of damaged tissue in envenomings.


Assuntos
Venenos de Crotalídeos , Mordeduras de Serpentes , Animais , Camundongos , Antivenenos , Mordeduras de Serpentes/genética , Venenos de Serpentes , Venenos de Crotalídeos/farmacologia , Músculos , Colágeno
4.
Toxins (Basel) ; 15(3)2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36977099

RESUMO

Pathological and inflammatory events in muscle after the injection of snake venoms vary in different regions of the affected tissue and at different time intervals. In order to study such heterogeneity in the immune cell microenvironment, a murine model of muscle necrosis based on the injection of the venom of Daboia russelii was used. Histological and immunohistochemical methods were utilized to identify areas in muscle tissue with a different extent of muscle cell damage, based on the presence of hypercontracted muscle cells, a landmark of necrosis, and on the immunostaining for desmin. A gradient of inflammatory cells (neutrophils and macrophages) was observed from heavily necrotic areas to less damaged and non-necrotic areas. GeoMx® Digital Spatial Profiler (NanoString, Seattle, WA, USA) was used for assessing the presence of markers of various immune cells by comparing high-desmin (nondamaged) and low-desmin (damaged) regions of muscle. Markers of monocytes, macrophages, M2 macrophages, dendritic cells, neutrophils, leukocyte adhesion and migration markers, and hematopoietic precursor cells showed higher levels in low-desmin regions, especially in samples collected 24 hr after venom injection, whereas several markers of lymphocytes did not. Moreover, apoptosis (BAD) and extracellular matrix (fibronectin) markers were also increased in low-desmin regions. Our findings reveal a hitherto-unknown picture of immune cell microheterogeneity in venom-injected muscle which greatly depends on the extent of muscle cell damage and the time lapse after venom injection.


Assuntos
Venenos de Crotalídeos , Animais , Camundongos , Desmina/metabolismo , Músculos/metabolismo , Venenos de Víboras , Necrose/patologia
5.
Cancer Res ; 83(13): 2105-2122, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37205636

RESUMO

Cancer cell dissemination to sentinel lymph nodes is associated with poor patient outcomes, particularly in breast cancer. The process by which cancer cells egress from the primary tumor upon interfacing with the lymphatic vasculature is complex and driven by dynamic interactions between cancer cells and stromal cells, including cancer-associated fibroblasts (CAF). The matricellular protein periostin can distinguish CAF subtypes in breast cancer and is associated with increased desmoplasia and disease recurrence in patients. However, as periostin is secreted, periostin-expressing CAFs are difficult to characterize in situ, limiting our understanding of their specific contribution to cancer progression. Here, we used in vivo genetic labeling and ablation to lineage trace periostin+ cells and characterize their functions during tumor growth and metastasis. Periostin-expressing CAFs were spatially found at periductal and perivascular margins, were enriched at lymphatic vessel peripheries, and were differentially activated by highly metastatic cancer cells versus poorly metastatic counterparts. Surprisingly, genetically depleting periostin+ CAFs slightly accelerated primary tumor growth but impaired intratumoral collagen organization and inhibited lymphatic, but not lung, metastases. Periostin ablation in CAFs impaired their ability to deposit aligned collagen matrices and inhibited cancer cell invasion through collagen and across lymphatic endothelial cell monolayers. Thus, highly metastatic cancer cells mobilize periostin-expressing CAFs in the primary tumor site that promote collagen remodeling and collective cell invasion within lymphatic vessels and ultimately to sentinel lymph nodes. SIGNIFICANCE: Highly metastatic breast cancer cells activate a population of periostin-expressing CAFs that remodel the extracellular matrix to promote escape of cancer cells into lymphatic vessels and drive colonization of proximal lymph nodes.


Assuntos
Neoplasias da Mama , Linfonodos , Humanos , Feminino , Linfonodos/patologia , Neoplasias da Mama/patologia , Células Estromais/patologia , Invasividade Neoplásica/patologia
6.
J Proteome Res ; 11(1): 292-305, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22004524

RESUMO

Proteomic analysis of wound exudates represents a valuable tool to investigate tissue pathology and to assess the therapeutic success of various interventions. In this study, the ability of horse-derived IgG and F(ab')(2) antivenoms to neutralize local pathological effects induced by the venom of the snake Bothrops asper in mouse muscle was investigated by the proteomic analysis of exudates collected in the vicinity of affected tissue. In experiments involving the incubation of venom and antivenom prior to injection in mice, hemorrhagic activity was completely abolished and local muscle-damaging activity was significantly reduced by the antivenoms. In these conditions, the relative amounts of several intracellular and extracellular matrix proteins were reduced by the action of antivenoms, whereas the relative amounts of various plasma proteins were not modified. Because not all intracellular proteins were reduced, it is likely that there is a residual cytotoxicity not neutralized by antivenoms. In experiments designed to more closely reproduce the actual circumstances of envenoming, that is, when antivenom is administered after envenomation, the number of proteins whose amounts in exudates were reduced by antivenoms decreased, underscoring the difficulty in neutralizing local pathology due to the very rapid onset of venom-induced pathology. In these experiments, IgG antivenom was more efficient than F(ab')(2) antivenom when administered after envenomation, probably as a consequence of differences in their pharmacokinetic profiles.


Assuntos
Antivenenos/farmacologia , Bothrops , Venenos de Crotalídeos/imunologia , Exsudatos e Transudatos/metabolismo , Fragmentos Fab das Imunoglobulinas/farmacologia , Proteoma/metabolismo , Animais , Antivenenos/uso terapêutico , Proteínas Sanguíneas/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Hemorragia/induzido quimicamente , Hemorragia/prevenção & controle , Cavalos , Fragmentos Fab das Imunoglobulinas/uso terapêutico , Imunoglobulina G , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Proteômica
7.
J Proteome Res ; 11(1): 279-91, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21939285

RESUMO

Hemorrhage induced by snake venom metalloproteinases (SVMPs) is a complex phenomenon resulting in capillary disruption and blood extravasation. The mechanism of action of SVMPs has been investigated using various methodologies however the precise molecular events associated with microvessel disruption remains not fully understood. To gain insight into the hemorrhagic process, we analyzed the global effects of HF3, an extremely hemorrhagic SVMP from Bothrops jararaca, in the mouse skin and plasma. We report that in the HF3-treated skin there was evidence of degradation of extracellular matrix (collagens and proteoglycans), cytosolic, cytoskeleton, and plasma proteins. Furthermore, the data suggest that direct and indirect effects promoted by HF3 contributed to tissue injury as the activation of collagenases was detected in the HF3-treated skin. In the plasma analysis after depletion of the 20 most abundant proteins, fibronectin appeared as degraded by HF3. In contrast, some plasma proteinase inhibitors showed higher abundance compared to control skin and plasma. This is the first study to assess the complex in vivo effects of HF3 using high-throughput proteomic approaches, and the results underscore a scenario characterized by the interplay between the hydrolysis of intracellular, extracellular, and plasma proteins and the increase of plasma inhibitors in the hemorrhagic process.


Assuntos
Bothrops , Venenos de Crotalídeos/toxicidade , Hemorragia/sangue , Metaloproteases/toxicidade , Proteoma/metabolismo , Pele/metabolismo , Animais , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Eletroforese em Gel Bidimensional , Hemorragia/induzido quimicamente , Masculino , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Fragmentos de Peptídeos/química , Mapeamento de Peptídeos , Proteólise , Proteoma/química , Pele/efeitos dos fármacos , Pele/patologia , Espectrometria de Massas em Tandem
8.
Toxins (Basel) ; 14(10)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36287926

RESUMO

Longitudinal metabolomics and lipidomics analyses were carried out on the blood plasma of mice injected intramuscularly with venoms of the viperid species Bothrops asper or Daboia russelii. Blood samples were collected 1, 3, 6, and 24 h after venom injection, and a control group of non-envenomed mice was included. Significant perturbations in metabolomics and lipidomics were observed at 1, 3, and 6 h, while values returned close to those of control mice by 24 h, hence reflecting a transient pattern of metabolic disturbance. Both venoms induced significant changes in amino acids, as well as in several purines and pyrimidines, and in some metabolites of the tricarboxylic acid cycle. KEGG analysis of metabolic pathways that showed those with the greatest change included aminoacyl tRNA synthesis and amino acid biosynthesis and metabolism pathways. With regard to lipid metabolism, there was an increase in triglycerides and some acyl carnitines and a concomitant drop in the levels of some phospholipids. In addition, envenomed mice had higher levels of cortisol, heme, and some oxidative stress markers. The overall pattern of metabolic changes in envenomed mice bears similarities with the patterns described in several traumatic injuries, thus underscoring a metabolic response/adaptation to the injurious action of the venoms.


Assuntos
Bothrops , Venenos de Crotalídeos , Daboia , Camundongos , Animais , Bothrops/metabolismo , Lipidômica , Hidrocortisona , Modelos Animais de Doenças , Daboia/metabolismo , Peçonhas/metabolismo , Aminoácidos/metabolismo , Purinas/metabolismo , Heme/metabolismo , Triglicerídeos/metabolismo , Pirimidinas/metabolismo , RNA de Transferência/metabolismo , Venenos de Crotalídeos/toxicidade , Venenos de Crotalídeos/metabolismo , Antivenenos/farmacologia
9.
J Exp Med ; 219(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35766979

RESUMO

Rap1 GTPase drives assembly of the Mig-10/RIAM/Lamellipodin (MRL protein)-integrin-talin (MIT) complex that enables integrin-dependent lymphocyte functions. Here we used tandem affinity tag-based proteomics to isolate and analyze the MIT complex and reveal that Phostensin (Ptsn), a regulatory subunit of protein phosphatase 1, is a component of the complex. Ptsn mediates dephosphorylation of Rap1, thereby preserving the activity and membrane localization of Rap1 to stabilize the MIT complex. CRISPR/Cas9-induced deletion of PPP1R18, which encodes Ptsn, markedly suppresses integrin activation in Jurkat human T cells. We generated apparently healthy Ppp1r18-/- mice that manifest lymphocytosis and reduced population of peripheral lymphoid tissues ascribable, in part, to defective activation of integrins αLß2 and α4ß7. Ppp1r18-/- T cells exhibit reduced capacity to induce colitis in a murine adoptive transfer model. Thus, Ptsn enables lymphocyte integrin-mediated functions by dephosphorylating Rap1 to stabilize the MIT complex. As a consequence, loss of Ptsn ameliorates T cell-mediated colitis.


Assuntos
Integrinas , Tecido Linfoide , Proteína Fosfatase 1 , Linfócitos T , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Adesão Celular/fisiologia , Colite/imunologia , Colite/metabolismo , Integrinas/imunologia , Integrinas/metabolismo , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Proteína Fosfatase 1/imunologia , Proteína Fosfatase 1/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Talina/metabolismo , Proteínas rap1 de Ligação ao GTP/imunologia , Proteínas rap1 de Ligação ao GTP/metabolismo
10.
Proteomics ; 11(21): 4218-28, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21928397

RESUMO

The pharmacological activities displayed by Bothrops jararaca venom undergo a significant ontogenetic shift. Similarly, the diet of this species changes from ectothermic prey in early life to endothermic prey in adulthood. In this study we used large and representative newborn and adult venom samples consisting of pools from 694 and 110 specimens, respectively, and demonstrate a significant ontogenetic shift in the venom proteome complexity of B. jararaca. 2-DE coupled to MS protein identification showed a clear rearrangement of the toxin arsenal both in terms of the total proteome, as of the glycoproteome. N-glycosylation seems to play a key role in venom protein variability between newborn and adult specimens. Upon the snake development, the subproteome of metalloproteinases undergoes a shift from a P-III-rich to a P-I-rich profile while the serine proteinase profile does not vary significantly. We also used isobaric tag labeling (iTRAQ) of venom tryptic peptides for the first time to examine the quantitative changes in the venom toxins of B. jararaca upon neonate to adult transition. The iTRAQ analysis showed changes in various toxin classes, especially the proteinases. Our study expands the in-depth understanding of venom complexity variation particularly with regard to toxin families that have been associated with envenomation pathogenesis.


Assuntos
Bothrops/crescimento & desenvolvimento , Venenos de Crotalídeos/metabolismo , Proteoma/metabolismo , Proteínas de Répteis/metabolismo , Animais , Bothrops/metabolismo , Glicosilação , Espectrometria de Massas , Proteômica
11.
J Proteome Res ; 10(4): 1987-2005, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21306181

RESUMO

Tissue damage analysis by traditional laboratory techniques is problematic. Proteomic analysis of exudates collected from affected tissue constitutes a powerful approach to assess tissue alterations, since biomarkers associated with pathologies can be identified in very low concentrations. In this study we proteomically explore the pathological effects induced by the venom of the viperid snake Bothrops asper in the gastrocnemius muscle of mice. Predominant proteins identified in the exudates included intracellular proteins, plasma proteins, extracellular matrix proteins and cell membrane-associated proteins. The presence of such proteins indicates cytotoxicity, plasma exudation, extracellular matrix degradation and shedding of membrane proteins. Some of these proteins may represent useful biomarkers for myonecrosis and microvascular damage. The effect of fucoidan, an inhibitor of myotoxic phospholipases A(2), and batimastat, an inhibitor of metalloproteinases, on the pathological effects induced by B. asper venom were also investigated. Fucoidan reduced the presence of intracellular proteins in exudates, whereas batimastat reduced the amount of relevant extracellular matrix proteins. The combination of these inhibitors resulted in the abrogation of the most relevant pathological effects of this venom. Thus, proteomic analysis of exudates represents a valuable approach to assess the characteristics of tissue damage in pathological models and the success of therapeutic interventions.


Assuntos
Biomarcadores/análise , Exsudatos e Transudatos/química , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Proteoma/análise , Mordeduras de Serpentes/patologia , Venenos de Serpentes/toxicidade , Animais , Anticoagulantes/química , Anticoagulantes/metabolismo , Bothrops , Feminino , Masculino , Espectrometria de Massas/métodos , Metaloendopeptidases/antagonistas & inibidores , Metaloendopeptidases/metabolismo , Camundongos , Músculo Esquelético/química , Necrose/patologia , Fenilalanina/análogos & derivados , Fenilalanina/química , Fenilalanina/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Proteômica/métodos , Venenos de Serpentes/química , Tiofenos/química , Tiofenos/metabolismo
13.
Toxins (Basel) ; 13(11)2021 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-34822585

RESUMO

In the Brazilian Amazon, Bothrops atrox snakebites are frequent, and patients develop tissue damage with blisters sometimes observed in the proximity of the wound. Antivenoms do not seem to impact blister formation, raising questions regarding the mechanisms underlying blister formation. Here, we launched a clinical and laboratory-based study including five patients who followed and were treated by the standard clinical protocols. Blister fluids were collected for proteomic analyses and molecular assessment of the presence of venom and antivenom. Although this was a small patient sample, there appeared to be a correlation between the time of blister appearance (shorter) and the amount of venom present in the serum (higher). Of particular interest was the biochemical identification of both venom and antivenom in all blister fluids. From the proteomic analysis of the blister fluids, all were observed to be a rich source of damage-associated molecular patterns (DAMPs), immunomodulators, and matrix metalloproteinase-9 (MMP-9), suggesting that the mechanisms by which blisters are formed includes the toxins very early in envenomation and continue even after antivenom treatment, due to the pro-inflammatory molecules generated by the toxins in the first moments after envenomings, indicating the need for local treatments with anti-inflammatory drugs plus toxin inhibitors to prevent the severity of the wounds.


Assuntos
Antivenenos/administração & dosagem , Vesícula/metabolismo , Venenos de Crotalídeos/toxicidade , Mordeduras de Serpentes/complicações , Animais , Antivenenos/metabolismo , Bothrops , Brasil , Venenos de Crotalídeos/antagonistas & inibidores , Feminino , Humanos , Masculino , Proteômica , Mordeduras de Serpentes/terapia
14.
J Proteome Res ; 9(9): 4758-66, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20666496

RESUMO

Chronic wounds associated with vascular disease, diabetes mellitus, or aging are leading causes of morbidity in western countries and represent an unresolved clinical problem. The development of innovative strategies to promote tissue repair is therefore an important task that requires a more thorough analysis of the underlying molecular pathophysiology. We propose that the understanding of the complex biological events that control tissue repair or its failure largely benefits from a broad analytical approach as provided by novel proteomic methodologies. Here we present the first comparative proteome analysis of wound exudates obtained from normal healing or nonhealing (venous leg ulcer) human skin wounds. A total of 149 proteins were identified with high confidence. A minority of proteins was exclusively present in exudate of the healing wound (23 proteins) or the nonhealing wound (26 proteins). Of particular interest was the differential distribution of specific proteins among the two different healing phenotypes. Whereas in the exudate obtained from the healing wound mediators characteristic for tissue formation were abundantly present, in the exudate obtained from the nonhealing wound numerous mediators characteristic for a persistent inflammatory and tissue destructive response were identified. Furthermore, the study also revealed interesting results regarding the identification of new proteins with yet unknown functions in skin repair. This analysis therefore represents an important basis for the search for potential biomarkers, which give rise to a better understanding and monitoring of disease progression in chronic wounds.


Assuntos
Exsudatos e Transudatos/química , Úlcera da Perna/metabolismo , Proteômica/métodos , Cicatrização/fisiologia , Idoso , Anexinas/química , Anexinas/metabolismo , Biomarcadores/química , Biomarcadores/metabolismo , Calgranulina B/química , Calgranulina B/metabolismo , Doença Crônica , Eletroforese em Gel de Poliacrilamida , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/metabolismo , Humanos , Imuno-Histoquímica , Inflamação , Lactoferrina/química , Lactoferrina/metabolismo , Pessoa de Meia-Idade , Proteoma/química , Proteoma/metabolismo , Reprodutibilidade dos Testes
15.
Toxicon ; 186: 94-104, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32781076

RESUMO

Clinical manifestations of envenomings by bites of the viperid snakes Bothrops asper and Daboia russelii show marked differences. Both venoms elicit the typical effects induced by viperid venoms (local tissue damage, bleeding, coagulopathies, shock). In addition, envenomings by D. russelii are characterized by a high incidence of acute kidney injury and by systemic capillary leak syndrome. The present investigation aimed to compare the local pathological and inflammatory events induced by the intramuscular injection of these venoms in a mouse model. B. asper venom induced stronger local hemorrhage, whereas D. russelii venom caused a higher extent of myonecrosis, and both venoms induced inflammation. Exudates collected from the site of tissue damage showed higher proteolytic activity in the case of samples from B. asper venom-treated mice. This activity was abrogated by antivenoms, indicating that it is the result of the action of venom proteinases. In addition, an increase in matrix metalloproteinases (MMPs) over time was detected in exudates induced by both venoms. Proteome analysis of exudates revealed higher abundance of extracellular matrix (ECM)-derived protein fragments in samples collected from B. asper venom-injected mice, whereas those from D. russelii venom-injected animals had higher amounts of intracellular proteins. Analysis of the subproteome of inflammatory mediators in exudates showed various patterns of change over time. Some mediators peaked at 180 min and decreased afterwards, whereas others increased and remained elevated during the 360 min observation period. Interestingly, various mediators (MIP-1α, MIP-1ß, KC, MIP-2, GM-CSF, VEGF, and LIX) increased and then decreased in the case of B. asper venom, while they remained elevated at 360 min in the case of D. russelii venom. Our findings show that these venoms induce a different pattern of local tissue damage and suggest that the venom of D. russelii induces a more sustained inflammatory reaction, an observation that may have implications for the pathophysiology of envenomings.


Assuntos
Antivenenos/uso terapêutico , Bothrops , Venenos de Crotalídeos , Daboia , Inflamação/tratamento farmacológico , Mordeduras de Serpentes , Animais , Exsudatos e Transudatos , Hemorragia , Camundongos , Proteoma
16.
Biomolecules ; 10(9)2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906814

RESUMO

ADAM9 is a metalloproteinase strongly expressed at the tumor-stroma border by both tumor and stromal cells. We previously showed that the host deletion of ADAM9 leads to enhanced growth of grafted B16F1 melanoma cells by a mechanism mediated by TIMP1 and the TNF-α/sTNFR1 pathway. This study aimed to dissect the structural modifications in the tumor microenvironment due to the stromal expression of ADAM9 during melanoma progression. We performed proteomic analysis of peritumoral areas of ADAM9 deleted mice and identified the altered expression of several matrix proteins. These include decorin, collagen type XIV, fibronectin, and collagen type I. Analysis of these matrices in the matrix producing cells of the dermis, fibroblasts, showed that ADAM9-/- and wild type fibroblasts synthesize and secreted almost comparable amounts of decorin. Conversely, collagen type I expression was moderately, but not significantly, decreased at the transcriptional level, and the protein increased in ADAM9-/- fibroblast mono- and co-cultures with melanoma media. We show here for the first time that ADAM9 can release a collagen fragment. Still, it is not able to degrade collagen type I. However, the deletion of ADAM9 in fibroblasts resulted in reduced MMP-13 and -14 expression that may account for the reduced processing of collagen type I. Altogether, the data show that the ablation of ADAM9 in the host leads to the altered expression of peritumoral extracellular matrix proteins that generate a more favorable environment for melanoma cell growth. These data underscore the suppressive role of stromal expression of ADAM9 in tumor growth and call for a better understanding of how protease activities function in a cellular context for improved targeting.


Assuntos
Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Matriz Extracelular/metabolismo , Melanoma/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Proliferação de Células/genética , Chlorocebus aethiops , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Decorina/metabolismo , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Melanoma/genética , Melanoma/patologia , Camundongos , Células Estromais/metabolismo
17.
Proteomics ; 9(3): 733-45, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19137556

RESUMO

Viperid snakes show the most complex snake-venom proteomes and offer an intriguing challenge in terms of understanding the nature of their components and the pathological outcomes of envenomation characterized by local and systemic effects. In this work, the venom complexity of eight Bothrops species was analyzed by 2-DE, and their subproteomes of proteinases were explored by 2-D immunostaining and 2-D gelatin zymography, demonstrating the diversity of their profiles. Heparin, a highly sulfated glycosaminoglycan released from mast cells, is involved in anti-coagulant and anti-inflammatory processes. Here, we explored the hypothesis that heparin released upon envenomation could interact with toxins and interfere with venom pathogenesis. We first identified the Bothrops venom subproteome of toxins that bind with high-affinity for heparin as composed of mainly serine proteinases and C-type lectins. Next, we explored the Bothrops jararaca toxins that bind to heparin under physiological conditions and identified a relationship between the subproteomes of proteinases, and that of heparin-binding toxins. Only the non-bound fraction, composed mainly of metalloproteinases, showed lethal and hemorrhagic activities, whereas the heparin-bound fraction contained mainly serine proteinases associated with coagulant and fibrinogenolytic activities. These data suggest that heparin binding to B. jararaca venom components in vivo has a minor protective effect to venom toxicity.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas Sanguíneas/metabolismo , Bothrops/metabolismo , Proteínas de Transporte/metabolismo , Venenos de Crotalídeos/metabolismo , Heparina/metabolismo , Peptídeo Hidrolases/metabolismo , Animais , Cromatografia de Afinidade , Eletroforese em Gel Bidimensional , Immunoblotting
18.
J Proteome Res ; 8(11): 5120-31, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19764775

RESUMO

In light of the complexity of wound tissue, proteomic analysis may not clearly reveal the nature of the wound or the processes involved in healing. However, exudate associated with wounds may provide a "window" on cellular events leading to the development of the wound and/or its healing. In this investigation we performed proteomic analysis on wound exudates from muscular wounds in mice caused by two very different types of snake venom toxins: BaP1, a snake venom metalloproteinase and Mtx-I, a snake venom phospholipase A2. Proteomic analysis of the exudates associated with these wounds clearly differentiated them and offered new perspectives on functional mechanisms by which these toxins cause tissue damage. In the case of wounds caused by the metalloproteinase, there was evidence of degradation of nonfibrillar collagens whereas the phospholipase wound exudate was noted by the presence of fibrillar collagen type I, apolipoproteins A-I, A-IV, and E, and fibronectin. These results suggest that the hemorrhage caused by snake venom metalloproteinases may be associated with the degradation of specific extracellular matrix proteins which play a role in matrix/capillary stabilization and that release of apolipoproteins from their complexes may be involved with the dysfunctional hemostasis observed following snake envenoming.


Assuntos
Exsudatos e Transudatos/química , Metaloendopeptidases , Músculo Esquelético , Fosfolipases A2 , Proteômica/métodos , Venenos de Serpentes , Cicatrização/fisiologia , Animais , Bothrops , Cromatografia Líquida/métodos , Proteínas da Matriz Extracelular/metabolismo , Queratinas/metabolismo , Espectrometria de Massas/métodos , Metaloendopeptidases/farmacologia , Metaloendopeptidases/toxicidade , Camundongos , Dados de Sequência Molecular , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Fosfolipases A2/farmacologia , Fosfolipases A2/toxicidade , Pele/citologia , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Mordeduras de Serpentes , Venenos de Serpentes/farmacologia , Venenos de Serpentes/toxicidade , Espectrometria de Massas em Tandem/métodos
19.
Int J Cancer ; 125(8): 1796-804, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19569239

RESUMO

The tumor microenvironment is thought to play an important role in invasion and metastasis. Previously, we have shown that signaling from melanoma cells can alter the gene expression profiles of fibroblasts in vitro and in vivo. To investigate whether the capacity to signal fibroblasts and alter host gene expression profiles is correlated to the invasive potential of specific human melanoma cell lines, we assayed changes in gene expression of fibroblasts when cocultured with the human melanoma cell lines BLM, MV3, A2058, SK-mel28 and WM164. Results indicated that the gene expression of key chemokines and cytokines, such as IL-1B, IL-8, IL-6 and CCL2/MCP1, was significantly upregulated in fibroblasts cocultured with the invasive melanoma lines BLM and MV3 compared to fibroblasts cocultured with noninvasive WM164 cells. The results were verified by quantitative RT-PCR as well as by protein assay and supported by immunohistochemistry of human invasive melanoma. Furthermore, a role for fibroblast-secreted IL-1B in the invasion of melanoma was demonstrated in vitro, where siRNA silencing of IL-1B in melanoma-stimulated fibroblasts resulted in a diminution of melanoma invasion. Although CCL2/MCP1, a chemoattractant for macrophages, was shown to be upregulated in fibroblasts cocultured with metastatic melanoma cell lines, immunohistochemical analysis of human melanoma also indicated CCL2/MCP1 production associated with the melanoma. In summary, these experiments indicate that the invasiveness of melanoma can partly be correlated to its ability to stimulate host stromal fibroblasts to give rise to the secretion of chemokines that generate a microenvironment that is conductive for melanoma invasion and metastasis.


Assuntos
Citocinas/genética , Fibroblastos/metabolismo , Melanoma/patologia , Neoplasias Cutâneas/patologia , Células Estromais/metabolismo , Regulação para Cima/fisiologia , Animais , Comunicação Celular/genética , Técnicas de Cocultura , Meios de Cultivo Condicionados , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Toxins (Basel) ; 11(5)2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052189

RESUMO

Skin blistering as a result of snakebite envenomation is characteristic of some bites, however little is known regarding the mechanism of blister formation or the composition of the blister fluid. In order to investigate if blister fluid proteomes from humans suffering snakebite envenomation could provide insights on the pathophysiology of these skin alterations, blister fluid was collected from six patients upon presentation at a clinic in India bitten by three species of snakes, Daboia russelii (3), Hypnale hypnale (2), or Naja naja (1). Standard clinical data were recorded throughout the treatment. Approximately 805 proteins were identified in blister fluids using proteomic analyses. Informatics analyses of the proteomes identified the top biological response categories as: platelet degranulation, innate immune response, receptor-mediated endocytosis, complement activation, and blood coagulation. Hierarchical clustering did not show a clear segregation of patients' proteomes being associated with the species of snake involved, suggesting that either the proteomic profiles described reflect a general response to venom-induced tissue damage or more patient data sets will be required to observe significant differences. Finally, it is of interest that venom proteins were also identified in the blister fluids suggesting that this fluid may serve as a reservoir of venom biologically active proteins/toxins, and as such, may indicate the clinical value of removing blister fluid to attenuate further tissue damage.


Assuntos
Vesícula , Proteoma/análise , Proteínas de Répteis/análise , Mordeduras de Serpentes , Adulto , Idoso , Animais , Pré-Escolar , Venenos Elapídicos/química , Feminino , Humanos , Índia , Lactente , Masculino , Pessoa de Meia-Idade , Proteômica , Serpentes , Venenos de Víboras/química , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA