Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 91(15): 10125-10131, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31298524

RESUMO

We developed an approach utilizing nanoscale vesicles extracted from brain regions combined with single molecule imaging to monitor how an animal's physiological condition regulates the dynamics of protein distributions in different brain regions. This method was used to determine the effect of nicotine on the distribution of receptor stoichiometry in different mouse brain regions. Nicotine-induced upregulation of α4ß2 nicotinic acetylcholine receptors (nAChRs) is associated with changes in their expression, trafficking, and stoichiometry. The structural assembly of nAChRs has been quantified in cell culture based systems using single molecule techniques. However, these methods are not capable of quantifying biomolecule assembly that takes place in a live animal. Both nicotine-induced upregulation and changes in nAChR stoichiometry differ across brain regions. Our single molecule approach revealed that nicotine acts differentially across brain regions to alter assembly in response to exposure and withdrawal.


Assuntos
Encéfalo/metabolismo , Membrana Celular/metabolismo , Fluorescência , Microscopia de Fluorescência/métodos , Receptores Nicotínicos/metabolismo , Imagem Individual de Molécula/métodos , Animais , Encéfalo/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Camundongos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/efeitos dos fármacos
2.
J Biol Chem ; 292(51): 21159-21169, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29074617

RESUMO

Nicotinic acetylcholine receptors (nAChRs) assemble in the endoplasmic reticulum (ER) and traffic to the cell surface as pentamers composed of α and ß subunits. Many nAChR subtypes can assemble with varying subunit ratios, giving rise to multiple stoichiometries exhibiting different subcellular localization and functional properties. In addition to the endogenous neurotransmitter acetylcholine, nicotine also binds and activates nAChRs and influences their trafficking and expression on the cell surface. Currently, no available technique can specifically elucidate the stoichiometry of nAChRs in the ER versus those in the plasma membrane. Here, we report a method involving single-molecule fluorescence measurements to determine the structural properties of these membrane proteins after isolation in nanoscale vesicles derived from specific organelles. These cell-derived nanovesicles allowed us to separate single membrane receptors while maintaining them in their physiological environment. Sorting the vesicles according to the organelle of origin enabled us to determine localized differences in receptor structural properties, structural influence on transport between organelles, and changes in receptor assembly within intracellular organelles. These organelle-specific nanovesicles revealed that one structural isoform of the α4ß2 nAChR was preferentially trafficked to the cell surface. Moreover, nicotine altered nAChR assembly in the ER, resulting in increased production of the receptor isoform that traffics more efficiently to the cell surface. We conclude that the combined effects of the increased assembly of one nAChR stoichiometry and its preferential trafficking likely drive the up-regulation of nAChRs on the cell surface upon nicotine exposure.


Assuntos
Membrana Celular/efeitos dos fármacos , Modelos Neurológicos , Neurônios/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Regulação para Cima/efeitos dos fármacos , Algoritmos , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Vesículas Citoplasmáticas/efeitos dos fármacos , Vesículas Citoplasmáticas/metabolismo , Células HEK293 , Humanos , Cinética , Ligantes , Camundongos , Microscopia de Fluorescência , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Multimerização Proteica , Transporte Proteico , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Imagem Individual de Molécula
3.
Bio Protoc ; 8(9)2018 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-30406159

RESUMO

Cell-derived vesicles facilitate the isolation of transmembrane proteins in their physiological membrane maintaining their structural and functional integrity. These vesicles can be generated from different cellular organelles producing, housing, or transporting the proteins. Combined with single-molecule imaging, isolated organelle specific vesicles can be employed to study the trafficking and assembly of the embedded proteins. Here we present a method for organelle specific single molecule imaging via isolation of ER and plasma membrane vesicles from HEK293T cells by employing OptiPrep gradients and nitrogen cavitation. The isolation was validated through Western blotting, and the isolated vesicles were used to perform single molecule studies of oligomeric receptor assembly.

4.
J Vis Exp ; (121)2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28362418

RESUMO

Understanding membrane protein trafficking, assembly, and expression requires an approach that differentiates between those residing in intracellular organelles and those localized on the plasma membrane. Traditional fluorescence-based measurements lack the capability to distinguish membrane proteins residing in different organelles. Cutting edge methodologies transcend traditional methods by coupling pH-sensitive fluorophores with total internal reflection fluorescence microscopy (TIRFM). TIRF illumination excites the sample up to approximately 150 nm from the glass-sample interface, thus decreasing background, increasing the signal to noise ratio, and enhancing resolution. The excitation volume in TIRFM encompasses the plasma membrane and nearby organelles such as the peripheral ER. Superecliptic pHluorin (SEP) is a pH sensitive version of GFP. Genetically encoding SEP into the extracellular domain of a membrane protein of interest positions the fluorophore on the luminal side of the ER and in the extracellular region of the cell. SEP is fluorescent when the pH is greater than 6, but remains in an off state at lower pH values. Therefore, receptors tagged with SEP fluoresce when residing in the endoplasmic reticulum (ER) or upon insertion in the plasma membrane (PM) but not when confined to a trafficking vesicle or other organelles such as the Golgi. The extracellular pH can be adjusted to dictate the fluorescence of receptors on the plasma membrane. The difference in fluorescence between TIRF images at neutral and acidic extracellular pH for the same cell corresponds to a relative number of receptors on the plasma membrane. This allows a simultaneous measurement of intracellular and plasma membrane resident receptors. Single vesicle insertion events can also be measured when the extracellular pH is neutral, corresponding to a low pH trafficking vesicle fusing with the plasma membrane and transitioning into a fluorescent state. This versatile technique can be exploited to study localization, expression, and trafficking of membrane proteins.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Fluorescência Verde/química , Substâncias Luminescentes/química , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência/métodos , Transporte Proteico/fisiologia , Animais , Biomarcadores/química , Complexo de Golgi/metabolismo , Espaço Intracelular/fisiologia , Camundongos , Vesículas Transportadoras/fisiologia
5.
Neuromethods ; 117: 119-132, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28025590

RESUMO

Tobacco dependence is a chronic relapsing disorder and nicotine, the primary alkaloid in tobacco, acts at nicotinic receptors to stimulate dopamine release in brain, which is responsible for the reinforcing properties of nicotine, leading to addiction. Although the majority of tobacco users express the desire to quit, only a small percentage of those attempting to quit are successful using the currently available pharmacotherapies. Nicotine upregulates the number of specific nicotinic receptors on the neuronal cell surface. An increase in receptor trafficking or preferential stoichiometric assembly of receptor subunits involves changes in assembly, endoplasmic reticulum export, vesicle transport, decreased degradation, desensitization, enhanced maturation of functional pentamers, and pharmacological chaperoning. Understanding these changes on a mechanistic level is important to the development of nicotinic receptors as drug targets. For this reason, cutting-edge methodologies are being developed and employed to pinpoint distinct changes in localization, assembly, export, vesicle trafficking, and stoichiometry in order to further understand the physiology of these receptors and to evaluate the action of novel therapeutics for smoking cessation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA