Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Purinergic Signal ; 17(2): 285-301, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33712981

RESUMO

Guanosine is a purine nucleoside that has been shown to exhibit antidepressant effects, but the mechanisms underlying its effect are not well established. We investigated if the antidepressant-like effect induced by guanosine in the tail suspension test (TST) in mice involves the modulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, voltage-dependent calcium channel (VDCC), and brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) pathway. We also evaluated if the antidepressant-like effect of guanosine is accompanied by an acute increase in hippocampal and prefrontocortical BDNF levels. Additionally, we investigated if the ability of guanosine to elicit a fast behavioral response in the novelty suppressed feeding (NSF) test is associated with morphological changes related to hippocampal synaptogenesis. The antidepressant-like effect of guanosine (0.05 mg/kg, p.o.) in the TST was prevented by DNQX (AMPA receptor antagonist), verapamil (VDCC blocker), K-252a (TrkBantagonist), or BDNF antibody. Increased P70S6K phosphorylation and higher synapsin I immunocontent in the hippocampus, but not in the prefrontal cortex, were observed 1 h after guanosine administration. Guanosine exerted an antidepressant-like effect 1, 6, and 24 h after its administration, an effect accompanied by increased hippocampal BDNF level. In the prefrontal cortex, BDNF level was increased only 1 h after guanosine treatment. Finally, guanosine was effective in the NSF test (after 1 h) but caused no alterations in dendritic spine density and remodeling in the ventral dentate gyrus (DG). Altogether, the results indicate that guanosine modulates targets known to be implicated in fast antidepressant behavioral responses (AMPA receptor, VDCC, and TrkB/BDNF pathway).


Assuntos
Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Guanosina/farmacologia , Glicoproteínas de Membrana/efeitos dos fármacos , Proteínas Tirosina Quinases/efeitos dos fármacos , Receptores de AMPA/agonistas , Transdução de Sinais/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Canais de Cálcio/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Feminino , Elevação dos Membros Posteriores , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Glicoproteínas de Membrana/biossíntese , Camundongos , Neurogênese/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Proteínas Tirosina Quinases/biossíntese , Sinapses/efeitos dos fármacos
2.
Metab Brain Dis ; 36(8): 2223-2233, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33950381

RESUMO

Although numerous studies have investigated the mechanisms underlying the fast and sustained antidepressant-like effects of ketamine, the contribution of the glucocorticoid receptor (GR) and dendritic branching remodeling to its responses remain to be fully established. This study investigated the ability of a single administration of ketamine to modulate the GR and dendritic branching remodeling and complexity in the hippocampus of mice subjected to chronic corticosterone (CORT) administration. CORT was administered for 21 days, followed by a single administration of ketamine (1 mg ∕kg, i.p.) or fluoxetine (10 mg ∕kg, p.o., conventional antidepressant) in mice. On 22nd, 24 h after the treatments, GR immunocontent in the hippocampus was analyzed by western blotting, while the dendritic arborization and dendrite length in the ventral and dorsal dentate gyrus (DG) of the hippocampus was analyzed by Sholl analysis. Chronic CORT administration downregulated hippocampal GR immunocontent, but this alteration was completely reversed by a single administration of ketamine, but not fluoxetine. Moreover, CORT administration significantly decreased dendritic branching in the dorsal and ventral DG areas and caused a mild decrease in dendrite length in both regions. Ketamine, but not fluoxetine, reversed CORT-induced dendritic branching loss in the ventral and dorsal DG areas, regions associated with mood regulation and cognitive functions, respectively. This study provides novel evidence that a single administration of ketamine, but not fluoxetine, rescued the impairments on GR and dendritic branching in the hippocampus of mice subjected to chronic CORT administration, effects that may be associated with its rapid antidepressant response.


Assuntos
Ketamina , Animais , Corticosterona/farmacologia , Depressão/induzido quimicamente , Fluoxetina/farmacologia , Hipocampo/metabolismo , Ketamina/farmacologia , Camundongos , Receptores de Glucocorticoides
3.
J Neural Transm (Vienna) ; 127(3): 355-370, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31974720

RESUMO

Physical exercise has been shown to exert antidepressant effects, but the mechanisms underlying this effect are not completely elucidated. Therefore, we aimed at investigating the antidepressant, pro-neurogenic, and neuroprotective effects of physical exercise and the possible role of FNDC5/irisin for this effect. Treadmill running was used as a protocol of physical exercise (45 min/day/5 days/week for 4 weeks) in female Swiss mice. Immobility time was registered in the tail suspension test (TST) and forced swim test (FST). Immunohistochemical analyses to evaluate hippocampal cell proliferation, neuronal survival, and neuronal commitment and maturation, as well as expression of FNDC5 C-terminal fragment were performed in the entire, dorsal, and ventral dentate gyrus (DG) of the hippocampus. Fluoro-Jade B staining was performed to evaluate degenerating neurons in DG. FNDC5 C-terminal and FNDC5/irisin immunocontents were analyzed by western blot. Exposure to physical exercise reduced the immobility time both in the TST and the FST. This antidepressant-like effect was accompanied by an increase in hippocampal cell proliferation, hippocampal neuronal differentiation, and neuronal survival in the dorsal and ventral DG. Fluoro-Jade B staining was reduced in entire and dorsal DG in exercised mice. Finally, physical exercise also resulted in increased number of FNDC5-positive cells in the hippocampal DG as well as elevated FNDC5 C-terminal and FNDC5/irisin immunocontent in the entire hippocampus. The results suggest that the FNDC5 C-terminal fragment/irisin pathway may be implicated in the antidepressant-like, pro-neurogenic, and neuroprotective effects of treadmill running.


Assuntos
Comportamento Animal/fisiologia , Fibronectinas/metabolismo , Hipocampo/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Condicionamento Físico Animal/fisiologia , Oxirredutases do Álcool , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Proteínas de Ligação a DNA , Giro Denteado/fisiologia , Depressão/terapia , Feminino , Camundongos , Corrida/fisiologia
4.
Acta Neuropsychiatr ; 26(1): 43-50, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25142099

RESUMO

OBJECTIVE: Cognitive deficits in schizophrenia play a crucial role in its clinical manifestation and seem to be related to changes in the cholinergic system, specifically the action of acetylcholinesterase (AChE). Considering this context, the aim of this study was to evaluate the chronic effects of ketamine in the activity of AChE, as well as in behavioural parameters involving learning and memory. METHODS: The ketamine was administered for 7 days. A duration of 24 h after the last injection, the animals were submitted to behavioural tests. The activity of AChE in prefrontal cortex, hippocampus and striatum was measured at different times after the last injection (1, 3, 6 and 24 h). RESULTS: The results indicate that ketamine did not affect locomotor activity and stereotypical movements. However, a cognitive deficit was observed in these animals by examining their behaviour in inhibitory avoidance. In addition, an increase in AChE activity was observed in all structures analysed 1, 3 and 6 h after the last injection. Differently, serum activity of AChE was similar between groups. CONCLUSION: Chronic administration of ketamine in an animal model of schizophrenia generates increased AChE levels in different brain tissues of rats that lead to cognitive deficits. Therefore, further studies are needed to elucidate the complex mechanisms associated with schizophrenia.


Assuntos
Acetilcolinesterase/metabolismo , Encéfalo/enzimologia , Ketamina/toxicidade , Atividade Motora/efeitos dos fármacos , Esquizofrenia/enzimologia , Animais , Corpo Estriado/enzimologia , Modelos Animais de Doenças , Hipocampo/enzimologia , Masculino , Memória/efeitos dos fármacos , Córtex Pré-Frontal/enzimologia , Ratos , Ratos Wistar , Esquizofrenia/induzido quimicamente
5.
Metab Brain Dis ; 28(3): 493-500, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23475280

RESUMO

Tissue methylmalonic acid (MMA) accumulation is the biochemical hallmark of methylmalonic acidemia. Clinically, the disease is characterized by progressive neurological deterioration and renal failure, whose pathophysiology is still undefined. In the present study we investigated the effect of acute MMA administration on some important parameters of brain neurotransmission in cerebral cortex of rats, namely Na(+), K(+)-ATPase, ouabain-insensitive ATPases and acetylcholinesterase activities, in the presence or absence of kidney injury induced by gentamicin administration. Initially, thirty-day old Wistar rats received one intraperitoneal injection of saline or gentamicin (70 mg/kg). One hour after, the animals received three consecutive subcutaneous injections of MMA (1.67 µmol/g) or saline, with an 11 h interval between each injection. One hour after the last injection the animals were killed and the cerebral cortex isolated. MMA administration by itself was not able to modify Na(+), K(+)-ATPase, ATPases ouabain-insensitive or acetylcholinesterase activities in cerebral cortex of young rats. In rats receiving gentamicin simultaneously with MMA, it was observed an increase in the activity of acetylcholinesterase activity in cerebral cortex, without any alteration in the activity of the other studied enzymes. Therefore, it may be speculated that cholinergic imbalance may play a role in the pathogenesis of the brain damage. Furthermore, the pathophysiology of tissue damage cannot be exclusively attributed to MMA toxicity, and control of kidney function should be considered as a priority in the management of these patients, specifically during episodes of metabolic decompensation when MMA levels are higher.


Assuntos
Acetilcolinesterase/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Inibidores da Colinesterase , Ácido Metilmalônico/farmacologia , Insuficiência Renal/enzimologia , Erros Inatos do Metabolismo dos Aminoácidos , Análise de Variância , Animais , Creatinina/sangue , Gentamicinas/toxicidade , Masculino , Degeneração Neural/patologia , Ouabaína/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/metabolismo , Membranas Sinápticas/efeitos dos fármacos , Membranas Sinápticas/enzimologia , Membranas Sinápticas/metabolismo , Transmissão Sináptica/efeitos dos fármacos
6.
Metab Brain Dis ; 28(3): 501-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23775300

RESUMO

Schizophrenia is one of the most disabling mental disorders that affects up to 1 % of the population worldwide. Although the causes of this disorder remain unknown, it has been extensively characterized by a broad range of emotional, ideational and cognitive impairments. Studies indicate that schizophrenia affects neurotransmitters such as dopamine, glutamate and acetylcholine. Recent studies suggest that rivastigmine (an acetylcholinesterase inhibitor) is important to improve the cognitive symptoms of schizophrenia. Therefore, the present study evaluated the protective effect of rivastigmine against the ketamine-induced behavioral (hyperlocomotion and cognitive deficit) and biochemical (increase of acetylcholinesterase activity) changes which characterize an animal model of schizophrenia in rats. Our results indicated that rivastigmine was effective to improve the cognitive deficit in different task (immediate memory, long term memory and short term memory) induced by ketamine in rats. Moreover, we observed that rivastigmina reversed the increase of acetylcholinesterase activity induced by ketamine in the cerebral cortex, hippocampus and striatum. However, rivastigmine was not able to prevent the ketamine-induced hyperlocomotion. In conslusion, ours results indicate that cholinergic system might be an important therapeutic target in the physiopathology of schizophrenia, mainly in the cognition, but additional studies should be carried.


Assuntos
Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/psicologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ketamina/farmacologia , Fármacos Neuroprotetores/farmacologia , Fenilcarbamatos/farmacologia , Esquizofrenia/induzido quimicamente , Análise de Variância , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Eletrochoque , Masculino , Memória/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Wistar , Rivastigmina , Esquizofrenia/enzimologia , Psicologia do Esquizofrênico
7.
J Neural Transm (Vienna) ; 119(4): 481-91, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21953515

RESUMO

Several studies have appointed for a role of glutamatergic system and/or mitochondrial function in major depression. In the present study, we evaluated the creatine kinase and mitochondrial respiratory chain activities after acute and chronic treatments with memantine (N-methyl-D: -aspartate receptor antagonist) and imipramine (tricyclic antidepressant) in rats. To this aim, rats were acutely or chronically treated for 14 days once a day with saline, memantine (5, 10 and 20 mg/kg) and imipramine (10, 20 and 30 mg/kg). After acute or chronic treatments, we evaluated mitochondrial respiratory chain complexes (I, II, II-III and IV) and creatine kinase activities in prefrontal cortex, hippocampus and striatum. Our results showed that both acute and chronic treatments with memantine or imipramine altered respiratory chain complexes and creatine kinase activities in rat brain; however, these alterations were different with relation to protocols (acute or chronic), complex, dose and brain area. Finally, these findings further support the hypothesis that the effects of imipramine and memantine could be involve mitochondrial function modulation.


Assuntos
Inibidores da Captação Adrenérgica/farmacologia , Encéfalo , Creatina Quinase/metabolismo , Dopaminérgicos/farmacologia , Imipramina/farmacologia , Memantina/farmacologia , Complexos Multienzimáticos/metabolismo , Análise de Variância , Animais , Encéfalo/anatomia & histologia , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Relação Dose-Resposta a Droga , Masculino , NADH Desidrogenase/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo
8.
Eur Neuropsychopharmacol ; 57: 15-29, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008015

RESUMO

The mTORC1-dependent dendritic spines formation represents a key mechanism for fast and long-lasting antidepressant responses, but it remains to be determined whether this mechanism may account for the ability of guanosine in potentiating ketamine's actions. Here, we investigated the ability of ketamine plus guanosine to elicit fast and sustained antidepressant-like and pro-synaptogenic effects in mice and the role of mTORC1 signaling in these responses. The combined administration of subthreshold doses of ketamine (0.1 mg/kg, i.p.) and guanosine (0.01 mg/kg, p.o.) caused a fast (1 h - 24 h), but not long-lasting (7 days) reduction in the immobility time in the tail suspension test. This behavioral effect was paralleled by a rapid (started in 1 h) and transient (back to baseline in 24 h) increase on BDNF, p-Akt (Ser473), p-GSK-3ß (Ser9), p-mTORC1 (Ser2448), p-p70S6K (Thr389) immunocontent in the hippocampus, but not in the prefrontal cortex. Conversely, ketamine plus guanosine increased PSD-95 and GluA1 immunocontent in the prefrontal cortex, but not the hippocampus after 1 h, whereas increased levels of these proteins in both brain structures were observed after 24 h, but these effects did not persist after 7 days. The combined administration of ketamine plus guanosine raised the dendritic spines density in the ventral hippocampal DG and prefrontal cortex after 24 h Rapamycin (0.2 nmol/site, i.c.v.) abrogated the antidepressant-like effect and pro-synaptogenic responses triggered by ketamine plus guanosine. These results indicate that guanosine may boost the antidepressant-like effect of ketamine for up to 24 h by a mTORC1-dependent mechanism.


Assuntos
Ketamina , Animais , Antidepressivos , Depressão/tratamento farmacológico , Depressão/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Guanosina/metabolismo , Guanosina/farmacologia , Hipocampo/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Transdução de Sinais
9.
Artigo em Inglês | MEDLINE | ID: mdl-35033626

RESUMO

Ketamine enhances the resilience against stress-induced depressive-like behavior, but its prophylactic efficacy in anxiety-related behaviors remains to be elucidated. Moreover, there is a need for developing novel preventive strategies against depressive- and anxiety-like behavior. AZD6765, a low-trapping NMDA receptor antagonist, shares with ketamine common molecular targets and produces rapid-onset antidepressant effects, suggesting that it could be a prophylactic agent. Therefore, this study investigated the prophylactic effect of ketamine against the depressive- and anxiety-like behavior induced by chronic restraint stress (2 h/day, for 10 days) in mice. We also investigated if AZD6765 exerts a resilience-enhancing response against these maladaptive behaviors. The contribution of 4E-BP1-related synaptic proteins synthesis (PSD-95/GluA1) in the possible pro-resilience efficacy of ketamine and AZD6765 was investigated. A single administration of ketamine (5 mg/kg, i.p.), but not AZD6765 (1 or 5 mg/kg, i.p.), given 1 week before the stress protocol, was effective in preventing stress-induced depressive-like behavior in the tail suspension test and splash test. Ketamine administered at 1 and 5 mg/kg (i.p.), but not AZD6765 (1 or 5 mg/kg, i.p.), prevented stress-induced anxiety-related self-grooming alterations. Stress-induced reduction on 4E-BP1 phosphorylation and PSD-95 and GluA1 immunocontent in the prefrontal cortex was prevented by ketamine (5 mg/kg, i.p.), but not AZD6765 (1 or 5 mg/kg, i.p.). The results indicate that ketamine, but not AZD6765, exerts a pro-resilience response against stress-induced maladaptive behavior, reinforcing that it could be a prophylactic agent to manage individuals at-risk to develop MDD and anxiety.


Assuntos
Analgésicos/farmacologia , Antidepressivos/farmacologia , Ketamina/farmacologia , Fenetilaminas/farmacologia , Piridinas/farmacologia , Restrição Física , Proteínas Adaptadoras de Transdução de Sinal , Animais , Ansiedade , Comportamento Animal , Proteínas de Ciclo Celular , Depressão , Elevação dos Membros Posteriores , Masculino , Camundongos , Córtex Pré-Frontal/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Restrição Física/psicologia
10.
Metab Brain Dis ; 26(1): 69-77, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21331561

RESUMO

Evidence from the literature indicates that mitochondrial dysfunction occurs in schizophrenia and other psychiatric disorders. To produce an animal model that simulates psychotic symptoms analogous to those seen in schizophrenic patients, sub-anesthetic doses of N-methyl-D-aspartate (NMDA) receptor antagonists (such as ketamine) have been used. The aim of this study was to evaluate behavioral changes and mitochondrial dysfunction in rats administered ketamine for 7 consecutive days. Behavioral evaluation was performed using an activity monitor 1, 3 and 6 h after the last injection. The activities of mitochondrial respiratory chain complexes I, II, I-III and IV in multiple brain regions (prefrontal cortex, striatum and hippocampus) were also evaluated. Our results showed that hyperlocomotion occurred in the ketamine group 1 and 3 h after the last injection. Stereotypic movements were elevated only when animals were evaluated 1 h after receiving ketamine. In addition, we found that ketamine administration affects the respiratory chain, altering the activity of respiratory chain complexes in the striatum and hippocampus after 1 h, those in the prefrontal cortex and hippocampus after 3 h and those in the prefrontal cortex and striatum 6 h after the last administration of ketamine. These findings suggest that ketamine alters the behavior of rats and changes the activity of respiratory chain complexes in multiple brain regions at different time points.


Assuntos
Transporte de Elétrons/efeitos dos fármacos , Ketamina/farmacologia , Mitocôndrias , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/fisiopatologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Fatores de Tempo , Distribuição Tecidual
11.
Metab Brain Dis ; 26(3): 229-36, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21789567

RESUMO

Alzheimer disease (AD) is a progressive neurodegenerative disease associated with cognitive impairment in multiple domains, such as memory and executive functions. Studies reveal damage in the electron transport chain of patients with AD, suggesting that this mitochondrial dysfunction plays an important role in the pathophysiology of the disease. Blood samples were taken from patients with AD (n = 20) and older subjects without dementia (n = 40) to evaluate the activity of complexes I, II, II-III, and IV of the mitochondrial respiratory chain in isolated lymphocytes. Results from the patient and control groups were compared. The activity of complexes II and IV was increased among patients compared to the control group. No significant difference was observed between controls who were not using psychotropic medication and patients. Our findings point out a mechanism of cellular compensation in which the mitochondrial respiratory chain requires an increase in electron transport to supply the energy needed for cellular functioning. Additional studies are needed to better clarify the mechanisms involved in the mitochondrial dynamics of AD.


Assuntos
Doença de Alzheimer/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Transporte de Elétrons/fisiologia , Linfócitos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Complexo I de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo
12.
Chem Biol Interact ; 342: 109476, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33872575

RESUMO

Ketamine is the prototype for glutamate-based fast-acting antidepressants. The establishment of ketamine-like drugs is still a challenge and ascorbic acid has emerged as a candidate. This study investigated the ascorbic acid's ability to induce a fast antidepressant-like response and to improve hippocampal synaptic markers in mice subjected to chronic corticosterone (CORT) administration. CORT was administered for 21 days, followed by a single administration of ascorbic acid (1 mg ∕Kg, p.o.), ketamine (1 mg ∕Kg, i.p.) or fluoxetine (10 mg ∕Kg, p.o.) in mice. Depressive-like behavior, hippocampal synaptic proteins immunocontent, dendrite spines density in the dentate gyrus (DG) were analyzed 24 h following treatments. The administration of ascorbic acid or ketamine, but not fluoxetine, counteracted CORT-induced depressive-like behavior in the tail suspension test (TST). CORT administration reduced PSD-95, GluA1, and synapsin (synaptic markers) immunocontent, and these alterations were reversed by ascorbic acid or ketamine, but only ketamine reversed the CORT-induced reduction on GluA1 immunocontent. In the ventral and dorsal DG, CORT decreased filopodia-, thin- and stubby-shaped spines, while ascorbic acid and ketamine abolished this alteration only in filopodia spines. Ascorbic acid and ketamine increased mushroom-shaped spines density in ventral and dorsal DG. Therefore, the results show that a single administration of ascorbic acid, in a way similar to ketamine, rapidly elicits an antidepressant-like response and reverses hippocampal synaptic deficits caused by CORT, an effect associated with increased levels of synaptic proteins and dendritic remodeling.


Assuntos
Antidepressivos/uso terapêutico , Ácido Ascórbico/uso terapêutico , Depressão/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Animais , Corticosterona , Espinhas Dendríticas/efeitos dos fármacos , Depressão/induzido quimicamente , Feminino , Elevação dos Membros Posteriores , Ketamina/uso terapêutico , Camundongos , Fármacos Neuroprotetores/uso terapêutico
13.
Psychopharmacology (Berl) ; 238(9): 2555-2568, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34342672

RESUMO

RATIONALE: Guanosine has been shown to potentiate ketamine's antidepressant-like actions, although its ability to augment the anxiolytic effect of ketamine remains to be determined. OBJECTIVE: This study investigated the anxiolytic-like effects of a single administration with low doses of ketamine and/or guanosine in mice subjected to chronic administration of corticosterone and the role of NLRP3-driven signaling. METHODS: Corticosterone (20 mg/kg, p.o.) was administered for 21 days, followed by a single administration of ketamine (0.1 mg/kg, i.p.), guanosine (0.01 mg/kg, p.o.), or ketamine (0.1 mg/kg, i.p.) plus guanosine (0.01 mg/kg, p.o.). Anxiety-like behavior and NLRP3-related targets were analyzed 24 h following treatments. RESULTS: Corticosterone reduced the time spent in the open arms and the central zone in the elevated plus-maze test and open-field test, respectively. Corticosterone raised the number of unsupported rearings and the number and time of grooming, and decreased the latency to start grooming in the open-field test. Disturbances in regional distribution (increased rostral grooming) and grooming transitions (increased aborted and total incorrect transitions) were detected in corticosterone-treated mice. These behavioral alterations were accompanied by increased immunocontent of Iba-1, ASC, NLRP3, caspase-1, TXNIP, and IL-1ß in the hippocampus, but not in the prefrontal cortex. The treatments with ketamine, guanosine, and ketamine plus guanosine were effective to counteract corticosterone-induced anxiety-like phenotype, but not disturbances in the hippocampal NLRP3 pathway. CONCLUSIONS: Our study provides novel evidence that low doses of ketamine and/or guanosine reverse corticosterone-induced anxiety-like behavior and shows that the NLRP3 inflammasome pathway is likely unrelated to this response.


Assuntos
Ketamina , Animais , Ansiedade/induzido quimicamente , Ansiedade/tratamento farmacológico , Comportamento Animal , Corticosterona , Depressão , Guanosina , Hipocampo , Inflamassomos , Ketamina/farmacologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR
14.
J Surg Res ; 161(1): 168-71, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19577772

RESUMO

Evidence from the literature has shown that the wound healing process is enhanced by ultrasound therapy. In the present study, we measured thiobarbituric acid-reactive substances (TBARS; index of lipoperoxidation) and hydroxyproline (index of collagen synthesis) levels in wounds after therapeutic pulsed ultrasound (TPU) treatment. Male Wistar rats were submitted to skin ulceration, and three doses of TPU (0.4, 0.6, and 0.8W/cm(2)) were used. A circular area of skin was removed with a punch biopsy from the medial dorsal region. After TPU for 10 days, TBARS (Draper and Hadley [21]) and hydroxyproline (Woessner [22]) levels were measured in the tissue around the wound. Results showed that TPU improved wound healing, since the wound size was significantly smaller 5 and 10 days after ulceration in groups submitted to this treatment. Moreover, TBARS levels were decreased in the 0.4, 0.6, and 0.8W/cm(2) TPU groups, and hydroxyproline levels were increased in the 0.6 and 0.8W/cm(2) TPU groups. These findings indicate that TPU presents beneficial effects on the wound healing process, probably by speeding up the inflammatory phase and inducing collagen synthesis.


Assuntos
Peroxidação de Lipídeos , Terapia por Ultrassom , Cicatrização , Animais , Colágeno/biossíntese , Fibrose , Hidroxiprolina/metabolismo , Masculino , Ratos , Ratos Wistar , Pele/patologia , Úlcera Cutânea/metabolismo , Úlcera Cutânea/patologia , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
15.
Chem Biol Interact ; 332: 109281, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33022268

RESUMO

The development of fast-acting antidepressants is crucial considering that conventional antidepressants require a long period to elicit therapeutic effects. Creatine, an ergogenic guanidine-like compound, stands out as a candidate to exert fast antidepressant-like responses. The present study investigated whether a single dose of creatine elicits a fast response in mice submitted to the novelty-suppressed feeding (NSF) test, a paradigm that may assess depression-like and anxiety-like behaviors. Ketamine, an NMDA receptor antagonist that has rapid antidepressant effects, and conventional antidepressants were also tested. The involvement of the mTORC1 signaling pathway in the behavioral responses was also investigated. Biochemical analyses included hippocampal BDNF level (ELISA) and total and phospho-mTORC1 (Ser2448), PSD95 and synapsin immunocontent (Western Blotting). Creatine (10 mg/kg, p.o.) or ketamine (1 mg/kg, i.p.) reduced the latency to feed in the NSF test. Conversely, fluoxetine (10 mg/kg, p.o.), imipramine (1 mg/kg, p.o.) or bupropion (10 mg/kg, p.o.) did not alter this parameter. The administration of rapamycin (mTOR inhibitor, 0.2 nmol/site, i.c.v.) abolished the effects of creatine or ketamine in the NSF test. Creatine or ketamine-treated mice presented increased hippocampal BDNF level, an effect abolished by rapamycin. The hippocampal phospho-mTORC1 (Ser2448) immunocontent was increased by creatine, but not by ketamine. However, ketamine, but not creatine, increased PSD95 and synapsin immunocontent. Creatine and ketamine elicit a rapid response in the NSF test by a mechanism dependent on the mTORC1 signaling pathway.


Assuntos
Creatina/farmacologia , Comportamento Alimentar , Ketamina/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transdução de Sinais , Animais , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Creatina/administração & dosagem , Proteína 4 Homóloga a Disks-Large/metabolismo , Feminino , Hipocampo/metabolismo , Ketamina/administração & dosagem , Camundongos , Fosforilação/efeitos dos fármacos , Sirolimo/farmacologia , Sinapsinas/metabolismo
16.
Exp Neurol ; 333: 113398, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32659382

RESUMO

We investigated the ability of agmatine to potentiate the antidepressant-like and synaptic effects of ketamine in mice. Agmatine (0.1 and 1 mg/kg, p.o.) and ketamine (1 and 10 mg/kg, i.p.) produced an antidepressant-like effect in the tail suspension test. The combination of agmatine (0.01 mg/kg, p.o.) and ketamine (0.1 mg/kg, i.p.), at subthreshold doses, produced an antidepressant-like effect 1 h, 24 h and 7d after treatment. Western blot analysis from prefrontal cortex tissue showed that the combined treatment, after 1 h, increased p70S6K and GluA1, and reduced synapsin 1 phosphorylation. Additionally, after 24 h, Akt, p70S6K, GluA1, and synapsin 1 phosphorylation; and PSD95 immunocontent increased (which persisted for up to 7d). Dendritic architecture analysis of the prefrontal cortex revealed that the combined treatment improved dendritic arbor complexity (after 24 h, up to 7d), and increased spine density (after 1 h, up to 24 h). Morphometric analysis revealed a filopodia-shaped dendrite spine upregulation after 1 h. A predominance of stubby, mushroom, branched and filopodia; and a reduction in thin protrusions were observed after 24 h. Finally, mushroom-shaped dendritic spines predominance increased after 7d. Agmatine potentiated ketamine's antidepressant, and dendritic arbors and spines remodeling effects in a time-dependent manner. Our data indicate Akt/p70S6K signaling as a likely target for these effects.


Assuntos
Agmatina/farmacologia , Antidepressivos/farmacologia , Dendritos/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Ketamina/farmacologia , Proteína Oncogênica v-akt/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Animais , Dendritos/ultraestrutura , Espinhas Dendríticas/ultraestrutura , Sinergismo Farmacológico , Elevação dos Membros Posteriores , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos
17.
Artigo em Inglês | MEDLINE | ID: mdl-31476335

RESUMO

Growing evidence has suggested that ascorbic acid may exhibit rapid anxiolytic and antidepressant-like effects. In this study the effects of a single administration of ascorbic acid (1 mg/kg, p.o.), ketamine (1 mg/kg, i.p., a fast-acting antidepressant) and fluoxetine (10 mg/kg, p.o., conventional antidepressant) were investigated on: a) behavioral performance in the novelty suppressed feeding (NSF) test; b) hippocampal synaptic protein immunocontent; c) dendritic spine density and morphology in the dorsal and ventral dentate gyrus (DG) of the hippocampus and d) hippocampal dendritic arborization. Ascorbic acid or ketamine, but not fluoxetine, decreased the latency to feed in the NSF test in mice. This effect was accompanied by increased p70S6K (Thr389) phosphorylation 1 h after ascorbic acid or ketamine treatment, although only ascorbic acid increased synapsin I immunocontent. Ketamine administration increased the dendritic spine density in the dorsal DG, but none of the treatments affected the maturation of dendritic spines in this region. In addition, both ascorbic acid and ketamine increased the dendritic spine density in the ventral DG, particularly the mature spines. Sholl analysis demonstrated no effect of any treatment on hippocampal dendritic arborization. Altogether, the results provide evidence that the behavioral and synaptic responses observed following ascorbic acid administration might occur via the upregulation of synaptic proteins, dendritic spine density, and maturation in the ventral DG, similar to ketamine. These findings contribute to understand the cellular targets implicated in its antidepressant/anxiolytic behavioral responses and support the notion that ascorbic acid may share with ketamine the ability to increase synaptic function.


Assuntos
Ácido Ascórbico/farmacologia , Espinhas Dendríticas/fisiologia , Ingestão de Alimentos/fisiologia , Hipocampo/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Espinhas Dendríticas/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/psicologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Ketamina/farmacologia , Camundongos , Plasticidade Neuronal/efeitos dos fármacos
18.
Eur J Appl Physiol ; 105(6): 861-7, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19153761

RESUMO

The present study investigated mitochondrial adaptations and oxidative damage after 4 and 8 weeks of running training in skeletal muscle of mice. Twenty-one male mice (CF1, 30-35 g) were distributed into the following groups (n = 7): untrained (UT); trained-4 weeks (T4); trained-8 weeks (T8). Forty-eight hours after the last training session the animals were killed by decapitation and quadriceps (red portion) were removed and stored at -70 degrees C. Succinate dehydrogenase (SDH), complexes I, II, II-III and IV, lipoperoxidation (TBARS), protein carbonyls (PC) and total thiol content were measured. Results show that endurance training (8-wk) increases the SDH activity and complexes (I, II, III, IV), decreases oxidative damage (TBARS, CP) and increases total thiol content in skeletal muscle when compared to untrained animals. In conclusion, eight weeks of running training are necessary for increases in mitochondrial respiratory chain enzyme activities to occur, in association with decreased oxidative damage.


Assuntos
Mitocôndrias Musculares/fisiologia , Músculo Esquelético/fisiologia , Estresse Oxidativo/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Transporte de Elétrons/fisiologia , Peroxidação de Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos , Carbonilação Proteica/fisiologia , Succinato Desidrogenase/metabolismo , Compostos de Sulfidrila/metabolismo
19.
Neurochem Int ; 53(6-8): 395-400, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18940214

RESUMO

Depressive disorders, including major depression, are serious and disabling. However, the exact pathophysiology of depression is not clearly understood. Life stressors contribute in some fashion to depression and are an extension of what occurs normally. In this context, chronic stress has been used as an animal model of depression. Based on the hypothesis that metabolism impairment might be involved in the pathophysiology of depression, in the present work we evaluated the activities of mitochondrial respiratory chain complexes and creatine kinase in brain of rats subjected to chronic stress. After 40 days of mild stress, a reduction in sweet food ingestion was observed, as well as increased adrenal gland weight, when compared to control group. We also verified that control group gained weight after 40 days, but stressed group did not. Moreover, our findings showed that complex I, III and IV were inhibited in stress group only in cerebral cortex and cerebellum. On the other hand, complex II and creatine kinase were not affected in stressed group. Although it is difficult to extrapolate our findings to the human condition, the inhibition of mitochondrial respiratory chain by chronic stress may be one mechanism in the pathophysiology of depressive disorders.


Assuntos
Encefalopatias Metabólicas/metabolismo , Encéfalo/metabolismo , Transtorno Depressivo/metabolismo , Transporte de Elétrons/fisiologia , Mitocôndrias/metabolismo , Estresse Psicológico/metabolismo , Glândulas Suprarrenais/metabolismo , Glândulas Suprarrenais/fisiopatologia , Animais , Regulação do Apetite/fisiologia , Biomarcadores/análise , Biomarcadores/metabolismo , Peso Corporal/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/fisiopatologia , Encefalopatias Metabólicas/complicações , Encefalopatias Metabólicas/fisiopatologia , Doença Crônica , Creatina Quinase/análise , Creatina Quinase/metabolismo , Transtorno Depressivo/etiologia , Transtorno Depressivo/fisiopatologia , Modelos Animais de Doenças , Regulação para Baixo/fisiologia , Transporte de Elétrons/efeitos dos fármacos , Metabolismo Energético/fisiologia , Masculino , Mitocôndrias/efeitos dos fármacos , Tamanho do Órgão/fisiologia , Fosforilação Oxidativa , Ratos , Ratos Wistar , Estresse Psicológico/complicações , Estresse Psicológico/fisiopatologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-28842257

RESUMO

Agmatine is an endogenous neuromodulator that has been shown to have beneficial effects in the central nervous system, including antidepressant-like effects in animals. In this study, we investigated the ability of agmatine (0.1mg/kg, p.o.) and the conventional antidepressant fluoxetine (10mg/kg, p.o.) to reverse the behavioral effects and morphological alterations in the hippocampus of mice exposed to chronic corticosterone (20mg/kg, p.o.) treatment for a period of 21days as a model of stress and depressive-like behaviors. Chronic corticosterone treatment increased the immobility time in the tail suspension test (TST), but did not cause anhedonic-like and anxiety-related behaviors, as assessed with the splash test and the open field test (OFT), respectively. Of note, the depressive-like behaviors induced by corticosterone were accompanied by a decrease in hippocampal cell proliferation, although no changes in hippocampal neuronal differentiation were observed. Our findings provide evidence that, similarly to fluoxetine, agmatine was able to reverse the corticosterone-induced depressive-like behaviors in the TST as well as the deficits in hippocampal cell proliferation. Additionally, fluoxetine but not agmatine, increased hippocampal differentiation. Agmatine, similar to fluoxetine, was capable of increasing both dendritic arborization and length in the entire dentate hippocampus, an effect more evident in the ventral portion of the hippocampus, as assessed with the modified Sholl analysis. Altogether, our results suggest that the increase in hippocampal proliferation induced by agmatine may contribute, at least in part, to the antidepressant-like response of this compound in this mouse model of stress induced by chronic exposure to corticosterone.


Assuntos
Agmatina/farmacologia , Antidepressivos/farmacologia , Hipocampo/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Anedonia/efeitos dos fármacos , Anedonia/fisiologia , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Corticosterona , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/patologia , Transtorno Depressivo/fisiopatologia , Modelos Animais de Doenças , Feminino , Fluoxetina/farmacologia , Hipocampo/patologia , Hipocampo/fisiopatologia , Camundongos , Atividade Motora/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Distribuição Aleatória , Estresse Psicológico/patologia , Estresse Psicológico/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA