Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ther ; 30(9): 3078-3094, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35821637

RESUMO

mRNA vaccines have recently proved to be highly effective against SARS-CoV-2. Key to their success is the lipid-based nanoparticle (LNP), which enables efficient mRNA expression and endows the vaccine with adjuvant properties that drive potent antibody responses. Effective cancer vaccines require long-lived, qualitative CD8 T cell responses instead of antibody responses. Systemic vaccination appears to be the most effective route, but necessitates adaptation of LNP composition to deliver mRNA to antigen-presenting cells. Using a design-of-experiments methodology, we tailored mRNA-LNP compositions to achieve high-magnitude tumor-specific CD8 T cell responses within a single round of optimization. Optimized LNP compositions resulted in enhanced mRNA uptake by multiple splenic immune cell populations. Type I interferon and phagocytes were found to be essential for the T cell response. Surprisingly, we also discovered a yet unidentified role of B cells in stimulating the vaccine-elicited CD8 T cell response. Optimized LNPs displayed a similar, spleen-centered biodistribution profile in non-human primates and did not trigger histopathological changes in liver and spleen, warranting their further assessment in clinical studies. Taken together, our study clarifies the relationship between nanoparticle composition and their T cell stimulatory capacity and provides novel insights into the underlying mechanisms of effective mRNA-LNP-based antitumor immunotherapy.


Assuntos
COVID-19 , Vacinas Anticâncer , Nanopartículas , Animais , Imunização/métodos , Imunoterapia , RNA Mensageiro/metabolismo , SARS-CoV-2/genética , Baço , Distribuição Tecidual , Vacinação/métodos
2.
Blood ; 124(14): 2262-70, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25150298

RESUMO

The C-type lectin-like receptor CLEC-2 mediates platelet activation through a hem-immunoreceptor tyrosine-based activation motif (hemITAM). CLEC-2 initiates a Src- and Syk-dependent signaling cascade that is closely related to that of the 2 platelet ITAM receptors: glycoprotein (GP)VI and FcγRIIa. Activation of either of the ITAM receptors induces shedding of GPVI and proteolysis of the ITAM domain in FcγRIIa. In the present study, we generated monoclonal antibodies against human CLEC-2 and used these to measure CLEC-2 expression on resting and stimulated platelets and on other hematopoietic cells. We show that CLEC-2 is restricted to platelets with an average copy number of ∼2000 per cell and that activation of CLEC-2 induces proteolytic cleavage of GPVI and FcγRIIa but not of itself. We further show that CLEC-2 and GPVI are expressed on CD41+ microparticles in megakaryocyte cultures and in platelet-rich plasma, which are predominantly derived from megakaryocytes in healthy donors, whereas microparticles derived from activated platelets only express CLEC-2. Patients with rheumatoid arthritis, an inflammatory disease associated with increased microparticle production, had raised plasma levels of microparticles that expressed CLEC-2 but not GPVI. Thus, CLEC-2, unlike platelet ITAM receptors, is not regulated by proteolysis and can be used to monitor platelet-derived microparticles.


Assuntos
Plaquetas/metabolismo , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Animais , Anticorpos Monoclonais/química , Artrite Reumatoide/metabolismo , Humanos , Inflamação , Megacariócitos/citologia , Camundongos , Ativação Plaquetária , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores de IgG/metabolismo , Proteínas Recombinantes/metabolismo
3.
Hum Mutat ; 36(11): 1039-42, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26224408

RESUMO

Congenital secondary erythrocytosis is a rare disorder characterized by increased red blood cell production. An important cause involves defects in the oxygen sensing pathway, in particular the PHD2-VHL-HIF axis. Mutations in VHL are also associated with the von Hippel-Lindau tumor predisposition syndrome. The differences in phenotypic expression of VHL mutations are poorly understood. We report on three patients with erythrocytosis, from two unrelated families. All patients show exceptionally high erythropoietin (EPO) levels, and are homozygous for a novel missense mutation in VHL: c.162G>C p.(Met54Ile). The c.162G>C mutation is the most upstream homozygous VHL mutation described so far in patients with erythrocytosis. It abolishes the internal translational start codon, which directs expression of VHLp19, resulting in the production of only VHLp30. The exceptionally high EPO levels and the absence of VHL-associated tumors in the patients suggest that VHLp19 has a role for regulating EPO levels that VHLp30 does not have, whereas VHLp30 is really the tumor suppressor isoform.


Assuntos
Códon de Iniciação , Homozigoto , Mutação , Iniciação Traducional da Cadeia Peptídica/genética , Policitemia/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Adolescente , Substituição de Aminoácidos , Pré-Escolar , Índices de Eritrócitos , Eritropoetina/sangue , Feminino , Ordem dos Genes , Loci Gênicos , Humanos , Masculino , Policitemia/sangue , Policitemia/diagnóstico , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Adulto Jovem
4.
Am J Hematol ; 89(4): 380-4, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24375447

RESUMO

Red blood cell pyruvate kinase (PK-R) is a key regulatory enzyme of red cell metabolism. Hereditary deficiency of PK-R is caused by mutations in the PKLR gene, leading to chronic nonspherocytic hemolytic anemia. In contrast to PK deficiency, inherited PK hyperactivity has also been described. This very rare abnormality of RBC metabolism has been documented in only two families and appears to be without clinical consequences. Thus far, it has been attributed to either a gain of function mutation in PKLR or to persistent expression of the fetal PK isozyme PK-M2 in mature red blood cells. We here report on a novel type of inherited PK hyperactivity that is characterized by solely increased expression of a kinetically normal PK-R. In line with the latter, no mutations were detected in PKLR. Mutations in regulatory regions as well as variations in PKLR copy number were also absent. In addition, linkage analysis suggested that PK hyperactivity segregated independently from the PKLR locus. We therefore postulate that the causative mutation resides in a novel yet-unidentified locus, and upregulates PKLR gene expression. Other mutations of the same locus may be involved in those cases of PK deficiency that fail to reveal mutations in PKLR.


Assuntos
Eritrócitos/enzimologia , Piruvato Quinase/genética , Western Blotting , Pré-Escolar , Análise Mutacional de DNA , Indução Enzimática , Ensaio de Imunoadsorção Enzimática , Feminino , Dosagem de Genes , Genes Dominantes , Ligação Genética , Glucosefosfato Desidrogenase/genética , Humanos , Cinética , Reação em Cadeia da Polimerase Multiplex , Linhagem , Estabilidade Proteica , Piruvato Quinase/sangue , Piruvato Quinase/imunologia , Análise de Sequência de DNA , Regulação para Cima
6.
Adv Healthc Mater ; 11(5): e2101202, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34382360

RESUMO

The therapeutic use of RNA interference is limited by the inability of siRNA molecules to reach their site of action, the cytosol of target cells. Lipid nanoparticles, including liposomes, are commonly employed as siRNA carrier systems to overcome this hurdle, although their widespread use remains limited due to a lack of delivery efficiency. More recently, nature's own carriers of RNA, extracellular vesicles (EVs), are increasingly being considered as alternative siRNA delivery vehicles due to their intrinsic properties. However, they are difficult to load with exogenous cargo. Here, EV-liposome hybrid nanoparticles (hybrids) are prepared and evaluated as an alternative delivery system combining properties of both liposomes and EVs. It is shown that hybrids are spherical particles encapsulating siRNA, contain EV-surface makers, and functionally deliver siRNA to different cell types. The functional behavior of hybrids, in terms of cellular uptake, toxicity, and gene-silencing efficacy, is altered as compared to liposomes and varies among recipient cell types. Moreover, hybrids produced with cardiac progenitor cell (CPC) derived-EVs retain functional properties attributed to CPC-EVs such as activation of endothelial signaling and migration. To conclude, hybrids combine benefits of both synthetic and biological drug delivery systems and might serve as future therapeutic carriers of siRNA.


Assuntos
Vesículas Extracelulares , Nanopartículas , Sistemas de Liberação de Medicamentos , Vesículas Extracelulares/metabolismo , Lipossomos , RNA Interferente Pequeno
7.
Biochim Biophys Acta Gen Subj ; 1865(4): 129763, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33065252

RESUMO

Extracellular vesicles (EVs) are nanoparticles which are released by cells from all three domains of life: Archaea, Bacteria and Eukarya. They can mediate cell-cell communication by transferring cargoes such as proteins and nucleic acids between cells. EVs receive great interest in both academia and industry as they have the potential to be natural drug carriers or vaccine candidates. However, limitations to their clinical translation exist as efficient isolation, loading, labelling and surface-engineering methods are lacking. In this article, we investigate a 'post-insertion' approach, which is commonly used in the functionalization of liposomes in the pharmaceutical field, on two different EV types: mammalian cell-derived EVs and bacteria-derived EVs. We aimed to find an easy and flexible approach to functionalize EVs, thereby improving the labelling, isolation, and surface-engineering.


Assuntos
Bactérias/química , Membrana Externa Bacteriana/química , Vesículas Extracelulares/química , Imuno-Histoquímica/métodos , Animais , Membrana Externa Bacteriana/ultraestrutura , Western Blotting/métodos , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Eletroforese em Gel de Poliacrilamida/métodos , Vesículas Extracelulares/ultraestrutura , Citometria de Fluxo/métodos , Células HEK293 , Humanos , Camundongos , Microscopia Eletrônica de Transmissão/métodos , Propriedades de Superfície
8.
Lancet Oncol ; 10(8): 764-71, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19576851

RESUMO

BACKGROUND: Phaeochromocytomas and paragangliomas are neuro-endocrine tumours that occur sporadically and in several hereditary tumour syndromes, including the phaeochromocytoma-paraganglioma syndrome. This syndrome is caused by germline mutations in succinate dehydrogenase B (SDHB), C (SDHC), or D (SDHD) genes. Clinically, the phaeochromocytoma-paraganglioma syndrome is often unrecognised, although 10-30% of apparently sporadic phaeochromocytomas and paragangliomas harbour germline SDH-gene mutations. Despite these figures, the screening of phaeochromocytomas and paragangliomas for mutations in the SDH genes to detect phaeochromocytoma-paraganglioma syndrome is rarely done because of time and financial constraints. We investigated whether SDHB immunohistochemistry could effectively discriminate between SDH-related and non-SDH-related phaeochromocytomas and paragangliomas in large retrospective and prospective tumour series. METHODS: Immunohistochemistry for SDHB was done on 220 tumours. Two retrospective series of 175 phaeochromocytomas and paragangliomas with known germline mutation status for phaeochromocytoma-susceptibility or paraganglioma-susceptibility genes were investigated. Additionally, a prospective series of 45 phaeochromocytomas and paragangliomas was investigated for SDHB immunostaining followed by SDHB, SDHC, and SDHD mutation testing. FINDINGS: SDHB protein expression was absent in all 102 phaeochromocytomas and paragangliomas with an SDHB, SDHC, or SDHD mutation, but was present in all 65 paraganglionic tumours related to multiple endocrine neoplasia type 2, von Hippel-Lindau disease, and neurofibromatosis type 1. 47 (89%) of the 53 phaeochromocytomas and paragangliomas with no syndromic germline mutation showed SDHB expression. The sensitivity and specificity of the SDHB immunohistochemistry to detect the presence of an SDH mutation in the prospective series were 100% (95% CI 87-100) and 84% (60-97), respectively. INTERPRETATION: Phaeochromocytoma-paraganglioma syndrome can be diagnosed reliably by an immunohistochemical procedure. SDHB, SDHC, and SDHD germline mutation testing is indicated only in patients with SDHB-negative tumours. SDHB immunohistochemistry on phaeochromocytomas and paragangliomas could improve the diagnosis of phaeochromocytoma-paraganglioma syndrome. FUNDING: The Netherlands Organisation for Scientific Research, Dutch Cancer Society, Vanderes Foundation, Association pour la Recherche contre le Cancer, Institut National de la Santé et de la Recherche Médicale, and a PHRC grant COMETE 3 for the COMETE network.


Assuntos
Neoplasias das Glândulas Suprarrenais/genética , Imuno-Histoquímica/métodos , Paraganglioma/genética , Feocromocitoma/genética , Succinato Desidrogenase/genética , Adolescente , Neoplasias das Glândulas Suprarrenais/diagnóstico , Adulto , Idoso , Western Blotting , Criança , Análise Mutacional de DNA , Feminino , Mutação em Linhagem Germinativa , Humanos , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Paraganglioma/diagnóstico , Feocromocitoma/diagnóstico , Síndrome , Adulto Jovem
9.
Nat Commun ; 11(1): 1113, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111843

RESUMO

Extracellular vesicles (EVs) form an endogenous transport system for intercellular transfer of biological cargo, including RNA, that plays a pivotal role in physiological and pathological processes. Unfortunately, whereas biological effects of EV-mediated RNA transfer are abundantly studied, regulatory pathways and mechanisms remain poorly defined due to a lack of suitable readout systems. Here, we describe a highly-sensitive CRISPR-Cas9-based reporter system that allows direct functional study of EV-mediated transfer of small non-coding RNA molecules at single-cell resolution. Using this CRISPR operated stoplight system for functional intercellular RNA exchange (CROSS-FIRE) we uncover various genes involved in EV subtype biogenesis that play a regulatory role in RNA transfer. Moreover we identify multiple genes involved in endocytosis and intracellular membrane trafficking that strongly regulate EV-mediated functional RNA delivery. Altogether, this approach allows the elucidation of regulatory mechanisms in EV-mediated RNA transfer at the level of EV biogenesis, endocytosis, intracellular trafficking, and RNA delivery.


Assuntos
Sistemas CRISPR-Cas , Vesículas Extracelulares/metabolismo , Pequeno RNA não Traduzido/metabolismo , Transporte Biológico , Comunicação Celular , Linhagem Celular , Endocitose/genética , Vesículas Extracelulares/genética , Fluorescência , Genes Reporter/genética , Células HEK293 , Humanos , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Pequeno RNA não Traduzido/genética
12.
Nanoscale ; 10(5): 2413-2426, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29334397

RESUMO

Extracellular vesicles (EVs) are increasingly being recognized as candidate drug delivery systems due to their ability to functionally transfer biological cargo between cells. However, manipulation of targeting properties of EVs through engineering of the producer cells can be challenging and time-consuming. As a novel approach to confer tumor targeting properties to isolated EVs, we generated recombinant fusion proteins of nanobodies against the epidermal growth factor receptor (EGFR) fused to phosphatidylserine (PS)-binding domains of lactadherin (C1C2). C1C2-nanobody fusion proteins were expressed in HEK293 cells and isolated from culture medium with near-complete purity as determined by SDS-PAGE. Fusion proteins specifically bound PS and showed no affinity for other common EV membrane lipids. Furthermore, C1C2 fused to anti-EGFR nanobodies (EGa1-C1C2) bound EGFR with high affinity and competed with binding of its natural ligand EGF, as opposed to C1C2 fused to non-targeting control nanobodies (R2-C1C2). Both proteins readily self-associated onto membranes of EVs derived from erythrocytes and Neuro2A cells without affecting EV size and integrity. EV-bound R2-C1C2 did not influence EV-cell interactions, whereas EV-bound EGa1-C1C2 dose-dependently enhanced specific binding and uptake of EVs by EGFR-overexpressing tumor cells. In conclusion, we developed a novel strategy to efficiently and universally confer tumor targeting properties to PS-exposing EVs after their isolation, without affecting EV characteristics, circumventing the need to modify EV-secreting cells. This strategy may also be employed to decorate EVs with other moieties, including imaging probes or therapeutic proteins.


Assuntos
Sistemas de Liberação de Medicamentos , Vesículas Extracelulares , Fosfatidilserinas/química , Anticorpos de Domínio Único/química , Antígenos de Superfície/metabolismo , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Proteínas do Leite/metabolismo , Proteínas Recombinantes de Fusão
13.
J Control Release ; 266: 100-108, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-28919558

RESUMO

Recent evidence has established that extracellular vesicles (EVs), including exosomes and microvesicles, form an endogenous transport system through which biomolecules, including proteins and RNA, are exchanged between cells. This endows EVs with immense potential for drug delivery and regenerative medicine applications. Understanding the biology underlying EV-based intercellular transfer of cargo is of great importance for the development of EV-based therapeutics. Here, we sought to characterize the cellular mechanisms involved in EV uptake. Internalization of fluorescently-labeled EVs was evaluated in HeLa cells, in 2D (monolayer) cell culture as well as 3D spheroids. Uptake was assessed using flow cytometry and confocal microscopy, using chemical as well as RNA interference-based inhibition of key proteins involved in individual endocytic pathways. Experiments with chemical inhibitors revealed that EV uptake depends on cholesterol and tyrosine kinase activity, which are implicated in clathrin-independent endocytosis, and on Na+/H+ exchange and phosphoinositide 3-kinase activity, which are important for macropinocytosis. Furthermore, EV internalization was inhibited by siRNA-mediated knockdown of caveolin-1, flotillin-1, RhoA, Rac1 and PAK1, but not clathrin heavy chain. Together, these results suggest that EVs enter cells predominantly via clathrin-independent endocytosis and macropinocytosis. Identification of EV components that promote their uptake via pathways that lead to functional cargo transfer might allow development of more efficient therapeutics through EV-inspired engineering.


Assuntos
Endocitose/fisiologia , Vesículas Extracelulares/metabolismo , Linhagem Celular Tumoral , Clatrina/genética , Clatrina/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nanopartículas , Proteínas de Ligação a Fosfato , RNA Interferente Pequeno/genética , Esferoides Celulares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA