Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 21(5): e3002139, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37252926

RESUMO

Intermittent hypoxia (IH) is a major clinical feature of obstructive sleep apnea (OSA). The mechanisms that become dysregulated after periods of exposure to IH are unclear, particularly in the early stages of disease. The circadian clock governs a wide array of biological functions and is intimately associated with stabilization of hypoxia-inducible factors (HIFs) under hypoxic conditions. In patients, IH occurs during the sleep phase of the 24-hour sleep-wake cycle, potentially affecting their circadian rhythms. Alterations in the circadian clock have the potential to accelerate pathological processes, including other comorbid conditions that can be associated with chronic, untreated OSA. We hypothesized that changes in the circadian clock would manifest differently in those organs and systems known to be impacted by OSA. Using an IH model to represent OSA, we evaluated circadian rhythmicity and mean 24-hour expression of the transcriptome in 6 different mouse tissues, including the liver, lung, kidney, muscle, heart, and cerebellum, after a 7-day exposure to IH. We found that transcriptomic changes within cardiopulmonary tissues were more affected by IH than other tissues. Also, IH exposure resulted in an overall increase in core body temperature. Our findings demonstrate a relationship between early exposure to IH and changes in specific physiological outcomes. This study provides insight into the early pathophysiological mechanisms associated with IH.


Assuntos
Apneia Obstrutiva do Sono , Transcriptoma , Animais , Camundongos , Transcriptoma/genética , Apneia Obstrutiva do Sono/genética , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/patologia , Ritmo Circadiano/genética , Modelos Animais de Doenças , Hipóxia/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(18): e2123560119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35471909

RESUMO

The duper mutation is a recessive mutation that shortens the period length of the circadian rhythm in Syrian hamsters. These animals show a large phase shift when responding to light pulses. Limited genetic resources for the Syrian hamster (Mesocricetus auratus) presented a major obstacle to cloning duper. This caused the duper mutation to remain unknown for over a decade. In this study, we did a de novo genome assembly of Syrian hamsters with long-read sequencing data from two different platforms, Pacific Biosciences and Oxford Nanopore Technologies. Using two distinct ecotypes and a fast homozygosity mapping strategy, we identified duper as an early nonsense allele of Cryptochrome 1 (Cry1) leading to a short, unstable protein. CRY1 is known as a highly conserved component of the repressive limb of the core circadian clock. The genome assembly and other genomic datasets generated in this study will facilitate the use of the Syrian hamster in biomedical research.


Assuntos
COVID-19 , Criptocromos , Animais , Ritmo Circadiano/genética , Cricetinae , Criptocromos/genética , Humanos , Mutação com Perda de Função , Mesocricetus , Mutação , Fatores de Transcrição/genética
3.
PLoS Genet ; 17(11): e1009933, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34807912

RESUMO

In mammals, the circadian clock coordinates cell physiological processes including inflammation. Recent studies suggested a crosstalk between these two pathways. However, the mechanism of how inflammation affects the clock is not well understood. Here, we investigated the role of the proinflammatory transcription factor NF-κB in regulating clock function. Using a combination of genetic and pharmacological approaches, we show that perturbation of the canonical NF-κB subunit RELA in the human U2OS cellular model altered core clock gene expression. While RELA activation shortened period length and dampened amplitude, its inhibition lengthened period length and caused amplitude phenotypes. NF-κB perturbation also altered circadian rhythms in the master suprachiasmatic nucleus (SCN) clock and locomotor activity behavior under different light/dark conditions. We show that RELA, like the clock repressor CRY1, repressed the transcriptional activity of BMAL1/CLOCK at the circadian E-box cis-element. Biochemical and biophysical analysis showed that RELA binds to the transactivation domain of BMAL1. These data support a model in which NF-kB competes with CRY1 and coactivator CBP/p300 for BMAL1 binding to affect circadian transcription. This is further supported by chromatin immunoprecipitation analysis showing that binding of RELA, BMAL1 and CLOCK converges on the E-boxes of clock genes. Taken together, these data support a significant role for NF-κB in directly regulating the circadian clock and highlight mutual regulation between the circadian and inflammatory pathways.


Assuntos
Fatores de Transcrição ARNTL/genética , Proteínas CLOCK/genética , Inflamação/genética , Fator de Transcrição RelA/genética , Animais , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Relógios Circadianos/genética , Ritmo Circadiano/genética , Criptocromos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Inflamação/patologia , NF-kappa B/genética , Núcleo Supraquiasmático/metabolismo
4.
Bioinformatics ; 38(24): 5375-5382, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36321857

RESUMO

MOTIVATION: Years of time-series gene expression studies have built a strong understanding of clock-controlled pathways across species. However, comparatively little is known about how 'non-clock' pathways influence clock function. We need a strong understanding of clock-coupled pathways in human tissues to better appreciate the links between disease and clock function. RESULTS: We developed a new computational approach to explore candidate pathways coupled to the clock in human tissues. This method, termed LTM, is an in silico screen to infer genetic influences on circadian clock function. LTM uses natural variation in gene expression in human data and directly links gene expression variation to clock strength independent of longitudinal data. We applied LTM to three human skin and one melanoma datasets and found that the cell cycle is the top candidate clock-coupled pathway in healthy skin. In addition, we applied LTM to thousands of tumor samples from 11 cancer types in the TCGA database and found that extracellular matrix organization-related pathways are tightly associated with the clock strength in humans. Further analysis shows that clock strength in tumor samples is correlated with the proportion of cancer-associated fibroblasts and endothelial cells. Therefore, we show both the power of LTM in predicting clock-coupled pathways and classify factors associated with clock strength in human tissues. AVAILABILITY AND IMPLEMENTATION: LTM is available on GitHub (https://github.com/gangwug/LTMR) and figshare (https://figshare.com/articles/software/LTMR/21217604) to facilitate its use. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Relógios Circadianos , Humanos , Relógios Circadianos/genética , Células Endoteliais , Genoma , Ciclo Celular/genética
5.
Bioinformatics ; 37(23): 4581-4583, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34726689

RESUMO

SUMMARY: Robust oscillation of clock genes is a core feature of the circadian system. Relative amplitude (rAMP) measures the robustness of clock gene oscillations but only works for longitudinal samples. We lack a method for estimating robust oscillations from human samples without labeled time. We show that the normalized coefficient of variation (nCV) of 10 clock genes is linearly correlated with their normalized rAMP, independent of time labels. We found that the mean nCV of clock genes are consistently decreased in tumors compared to nontumors, suggesting a new therapeutic target in cancer treatment by enhancing clock robustness. nCV can provide a simple measure of the clock robustness in population-level datasets. AVAILABILITY AND IMPLEMENTATION: The nCV package (https://github.com/gangwug/nCV) and web application (https://github.com/gangwug/nCVapp) are available on the GitHub repository. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Relógios Circadianos , Humanos , Software
6.
Proc Natl Acad Sci U S A ; 116(42): 20953-20958, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31575744

RESUMO

Hospitals operate 24 h a day, and it is assumed that important clinical decisions occur continuously around the clock. However, many aspects of hospital operation occur at specific times of day, including medical team rounding and shift changes. It is unclear whether this impacts patient care, as no studies have addressed this. We analyzed the daily distribution of ∼500,000 doses of 12 separate drugs in 1,546 inpatients at a major children's hospital in the United States from 2010 to 2017. We tracked both order time (when a care provider places an electronic request for a drug) and dosing time (when the patient receives the drug). Order times were time-of-day-dependent, marked by distinct morning-time surges and overnight lulls. Nearly one-third of all 103,847 orders for treatment were placed between 8:00 AM and 12:00 PM. First doses from each order were also rhythmic but shifted by 2 h. These 24-h rhythms in orders and first doses were remarkably consistent across drugs, diagnosis, and hospital units. This rhythm in hospital medicine coincided with medical team rounding time, not necessarily immediate medical need. Lastly, we show that the clinical response to hydralazine, an acute antihypertensive, is dosing time-dependent and greatest at night, when the fewest doses were administered. The prevailing dogma is that hospital treatment is administered as needed regardless of time of day. Our findings challenge this notion and reveal a potential operational barrier to best clinical care.


Assuntos
Esquema de Medicação , Cronofarmacoterapia , Preparações Farmacêuticas/administração & dosagem , Hospitais/estatística & dados numéricos , Humanos , Fatores de Tempo
7.
Proc Natl Acad Sci U S A ; 115(45): 11643-11648, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30348778

RESUMO

The circadian clock orchestrates 24-h rhythms in physiology in most living organisms. At the molecular level, the dogma is that circadian oscillations are based on a negative transcriptional feedback loop. Recent studies found the NAD+-dependent histone deacetylase, SIRT1, directly regulates acetylation status of clock components and influences circadian amplitude in cells. While Nakahata et al. [Nakahata Y, Kaluzova M (2008) Cell 134:329-340] reported that loss of SIRT1 increases amplitude through BMAL1 acetylation, Asher et al. [Asher G, Gatfield D (2008) Cell 134:317-328] reported that loss of SIRT1 decreases amplitude through an increase in acetylated PER2. To address this SIRT1 paradox, we developed a circadian enzymatic model. Predictions from this model and experimental validation strongly align with the findings of Asher et al., with PER2 as the primary target of SIRT1. Further, the model suggested SIRT1 influences BMAL1 expression through actions on PGC1α. We validated this finding experimentally. Thus, our computational and experimental approaches suggest SIRT1 positively regulates clock function through actions on PER2 and PGC1α.


Assuntos
Relógios Circadianos/genética , Retroalimentação Fisiológica , Modelos Biológicos , Proteínas Circadianas Period/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Sirtuína 1/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Linhagem Celular , Simulação por Computador , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Humanos , Luciferases/genética , Luciferases/metabolismo , Camundongos , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Proteínas Circadianas Period/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo
8.
Proc Natl Acad Sci U S A ; 115(48): 12313-12318, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30377266

RESUMO

Skin is the largest organ in the body and serves important barrier, regulatory, and sensory functions. The epidermal layer shows rhythmic physiological responses to daily environmental variation (e.g., DNA repair). We investigated the role of the circadian clock in the transcriptional regulation of epidermis using a hybrid experimental design, in which a limited set of human subjects (n = 20) were sampled throughout the 24-h cycle and a larger population (n = 219) were sampled once. We found a robust circadian oscillator in human epidermis at the population level using pairwise correlations of clock and clock-associated genes in 298 epidermis samples. We then used CYCLOPS to reconstruct the temporal order of all samples, and identified hundreds of rhythmically expressed genes at the population level in human epidermis. We compared these results with published time-series skin data from mice and found a strong concordance in circadian phase across species for both transcripts and pathways. Furthermore, like blood, epidermis is readily accessible and a potential source of biomarkers. Using ZeitZeiger, we identified a biomarker set for human epidermis that is capable of reporting circadian phase to within 3 hours from a single sample. In summary, we show rhythms in human epidermis that persist at the population scale and describe a path to develop robust single-sample circadian biomarkers.


Assuntos
Ritmo Circadiano , Epiderme/metabolismo , Adulto , Animais , Relógios Circadianos , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genética Populacional , Humanos , Masculino , Pessoa de Meia-Idade , Transcrição Gênica , População Branca/genética , Adulto Jovem
9.
Proc Natl Acad Sci U S A ; 114(20): 5312-5317, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28439010

RESUMO

Circadian rhythms modulate many aspects of physiology. Knowledge of the molecular basis of these rhythms has exploded in the last 20 years. However, most of these data are from model organisms, and translation to clinical practice has been limited. Here, we present an approach to identify molecular rhythms in humans from thousands of unordered expression measurements. Our algorithm, cyclic ordering by periodic structure (CYCLOPS), uses evolutionary conservation and machine learning to identify elliptical structure in high-dimensional data. From this structure, CYCLOPS estimates the phase of each sample. We validated CYCLOPS using temporally ordered mouse and human data and demonstrated its consistency on human data from two independent research sites. We used this approach to identify rhythmic transcripts in human liver and lung, including hundreds of drug targets and disease genes. Importantly, for many genes, the circadian variation in expression exceeded variation from genetic and other environmental factors. We also analyzed hepatocellular carcinoma samples and show these solid tumors maintain circadian function but with aberrant output. Finally, to show how this method can catalyze medical translation, we show that dosage time can temporally segregate efficacy from dose-limiting toxicity of streptozocin, a chemotherapeutic drug. In sum, these data show the power of CYCLOPS and temporal reconstruction in bridging basic circadian research and clinical medicine.


Assuntos
Ritmo Circadiano/fisiologia , Perfilação da Expressão Gênica/métodos , Estatística como Assunto/métodos , Algoritmos , Animais , Proteínas CLOCK/metabolismo , Bases de Dados Genéticas , Humanos , Fígado/metabolismo , Fígado/fisiologia , Neoplasias Hepáticas/metabolismo , Pulmão/metabolismo , Pulmão/fisiologia , Aprendizado de Máquina , Camundongos , Transcrição Gênica/genética
10.
Nature ; 489(7415): 313-7, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22885700

RESUMO

Cornelia de Lange syndrome (CdLS) is a dominantly inherited congenital malformation disorder, caused by mutations in the cohesin-loading protein NIPBL for nearly 60% of individuals with classical CdLS, and by mutations in the core cohesin components SMC1A (~5%) and SMC3 (<1%) for a smaller fraction of probands. In humans, the multisubunit complex cohesin is made up of SMC1, SMC3, RAD21 and a STAG protein. These form a ring structure that is proposed to encircle sister chromatids to mediate sister chromatid cohesion and also has key roles in gene regulation. SMC3 is acetylated during S-phase to establish cohesiveness of chromatin-loaded cohesin, and in yeast, the class I histone deacetylase Hos1 deacetylates SMC3 during anaphase. Here we identify HDAC8 as the vertebrate SMC3 deacetylase, as well as loss-of-function HDAC8 mutations in six CdLS probands. Loss of HDAC8 activity results in increased SMC3 acetylation and inefficient dissolution of the 'used' cohesin complex released from chromatin in both prophase and anaphase. SMC3 with retained acetylation is loaded onto chromatin, and chromatin immunoprecipitation sequencing analysis demonstrates decreased occupancy of cohesin localization sites that results in a consistent pattern of altered transcription seen in CdLS cell lines with either NIPBL or HDAC8 mutations.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Síndrome de Cornélia de Lange/genética , Síndrome de Cornélia de Lange/metabolismo , Histona Desacetilases/genética , Mutação/genética , Proteínas Repressoras/genética , Acetilação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Anáfase , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteoglicanas de Sulfatos de Condroitina/química , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Cromatina/genética , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/química , Cristalografia por Raios X , Proteínas de Ligação a DNA , Feminino , Fibroblastos , Células HeLa , Histona Desacetilases/química , Histona Desacetilases/deficiência , Histona Desacetilases/metabolismo , Humanos , Masculino , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Prófase , Conformação Proteica , Proteínas/genética , Proteínas Repressoras/química , Proteínas Repressoras/deficiência , Proteínas Repressoras/metabolismo , Transcrição Gênica , Coesinas
11.
Proc Natl Acad Sci U S A ; 111(42): 15166-71, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25288739

RESUMO

Growing evidence suggests that core spliceosomal components differentially affect RNA processing of specific genes; however, whether changes in the levels or activities of these factors control specific signaling pathways is largely unknown. Here we show that some SM-like (LSM) genes, which encode core components of the spliceosomal U6 small nuclear ribonucleoprotein complex, regulate circadian rhythms in plants and mammals. We found that the circadian clock regulates the expression of LSM5 in Arabidopsis plants and several LSM genes in mouse suprachiasmatic nucleus. Further, mutations in LSM5 or LSM4 in Arabidopsis, or down-regulation of LSM3, LSM5, or LSM7 expression in human cells, lengthens the circadian period. Although we identified changes in the expression and alternative splicing of some core clock genes in Arabidopsis lsm5 mutants, the precise molecular mechanism causing period lengthening remains to be identified. Genome-wide expression analysis of either a weak lsm5 or a strong lsm4 mutant allele in Arabidopsis revealed larger effects on alternative splicing than on constitutive splicing. Remarkably, large splicing defects were not observed in most of the introns evaluated using RNA-seq in the strong lsm4 mutant allele used in this study. These findings support the idea that some LSM genes play both regulatory and constitutive roles in RNA processing, contributing to the fine-tuning of specific signaling pathways.


Assuntos
Proteínas de Arabidopsis/fisiologia , Ritmo Circadiano , Proteínas de Ligação a RNA/fisiologia , Ribonucleoproteínas Nucleares Pequenas/fisiologia , Alelos , Processamento Alternativo , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica de Plantas , Genômica , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Fenótipo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Análise de Sequência de RNA , Transdução de Sinais , Spliceossomos/metabolismo , Núcleo Supraquiasmático/metabolismo
13.
Hum Mol Genet ; 23(11): 2888-900, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24403048

RESUMO

Cornelia de Lange syndrome (CdLS) is a multisystem genetic disorder with distinct facies, growth failure, intellectual disability, distal limb anomalies, gastrointestinal and neurological disease. Mutations in NIPBL, encoding a cohesin regulatory protein, account for >80% of cases with typical facies. Mutations in the core cohesin complex proteins, encoded by the SMC1A, SMC3 and RAD21 genes, together account for ∼5% of subjects, often with atypical CdLS features. Recently, we identified mutations in the X-linked gene HDAC8 as the cause of a small number of CdLS cases. Here, we report a cohort of 38 individuals with an emerging spectrum of features caused by HDAC8 mutations. For several individuals, the diagnosis of CdLS was not considered prior to genomic testing. Most mutations identified are missense and de novo. Many cases are heterozygous females, each with marked skewing of X-inactivation in peripheral blood DNA. We also identified eight hemizygous males who are more severely affected. The craniofacial appearance caused by HDAC8 mutations overlaps that of typical CdLS but often displays delayed anterior fontanelle closure, ocular hypertelorism, hooding of the eyelids, a broader nose and dental anomalies, which may be useful discriminating features. HDAC8 encodes the lysine deacetylase for the cohesin subunit SMC3 and analysis of the functional consequences of the missense mutations indicates that all cause a loss of enzymatic function. These data demonstrate that loss-of-function mutations in HDAC8 cause a range of overlapping human developmental phenotypes, including a phenotypically distinct subgroup of CdLS.


Assuntos
Fontanelas Cranianas/anormalidades , Síndrome de Cornélia de Lange/enzimologia , Anormalidades do Olho/enzimologia , Genes Ligados ao Cromossomo X , Histona Desacetilases/genética , Hipertelorismo/enzimologia , Proteínas Repressoras/genética , Sequência de Aminoácidos , Criança , Pré-Escolar , Estudos de Coortes , Fontanelas Cranianas/enzimologia , Síndrome de Cornélia de Lange/genética , Anormalidades do Olho/genética , Feminino , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Hipertelorismo/genética , Lactente , Masculino , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Fenótipo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Alinhamento de Sequência
14.
Am J Med Genet A ; 161A(9): 2148-57, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23873582

RESUMO

Hearing impairment affects 1 in 650 newborns, making it the most common congenital sensory impairment. Autosomal recessive nonsyndromic sensorineural hearing impairment (ARNSHI) comprises 80% of familial hearing impairment cases. Mutations in GJB2 account for a significant number of ARNSHI (and up to 50% of documented recessive (e.g., more than 1 affected sibling) hearing impairment in some populations). Mutations in the GJB2 gene are amongst the most common causes of hearing impairment in populations of various ethnic backgrounds. Two mutations of this gene, 35delG and 167delT, account for the majority of reported mutations in Caucasian populations, especially those of Mediterranean and Ashkenazi Jewish background. The 235delC mutation is most prevalent in East Asian populations. Some mutations are of less well-characterized significance. The V37I missense mutation, common in Asian populations, was initially described as a polymorphism and later as a potentially pathogenic mutation. We report here on 15 unrelated individuals with ARNSHI and homozygosity for the V37I GJB2 missense mutation. Nine individuals are of Chinese ancestry, two are of unspecified Asian descent, one is of Japanese descent, one individual is of Vietnamese ancestry, one of Philippine background and one of Italian and Cuban/Caucasian background. Homozygosity for the V37I GJB2 mutation may be a more common pathogenic missense mutation in Asian populations, resulting in mild to moderate sensorineural hearing impairment. We report a presumed haplotype block specific to East Asian individuals with the V37I mutation encompassing the GJB2 gene that may account for the high prevalence in East Asian populations.


Assuntos
Conexinas/genética , Perda Auditiva Neurossensorial/genética , Homozigoto , Mutação , Adolescente , Povo Asiático/genética , Criança , Pré-Escolar , Mapeamento Cromossômico , Códon , Conexina 26 , Análise Mutacional de DNA , Feminino , Haplótipos , Perda Auditiva Neurossensorial/diagnóstico , Humanos , Lactente , Desequilíbrio de Ligação , Masculino , Polimorfismo de Nucleotídeo Único
15.
Am J Med Genet A ; 161A(9): 2134-47, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23897863

RESUMO

This report describes an algorithm developed to predict the pathogenicity of copy number variants (CNVs) in large sample cohorts. CNVs (genomic deletions and duplications) are found in healthy individuals and in individuals with genetic diagnoses, and differentiation of these two classes of CNVs can be challenging and usually requires extensive manual curation. We have developed PECONPI, an algorithm to assess the pathogenicity of CNVs based on gene content and CNV frequency. This software was applied to a large cohort of patients with genetically heterogeneous non-syndromic hearing loss to score and rank each CNV based on its relative pathogenicity. Of 636 individuals tested, we identified the likely underlying etiology of the hearing loss in 14 (2%) of the patients (1 with a homozygous deletion, 7 with a deletion of a known hearing loss gene and a point mutation on the trans allele and 6 with a deletion larger than 1 Mb). We also identified two probands with smaller deletions encompassing genes that may be functionally related to their hearing loss. The ability of PECONPI to determine the pathogenicity of CNVs was tested on a second genetically heterogeneous cohort with congenital heart defects (CHDs). It successfully identified a likely etiology in 6 of 355 individuals (2%). We believe this tool is useful for researchers with large genetically heterogeneous cohorts to help identify known pathogenic causes and novel disease genes.


Assuntos
Perda Auditiva Neurossensorial/genética , Software , Variações do Número de Cópias de DNA , Proteínas da Matriz Extracelular/genética , Deleção de Genes , Genômica/métodos , Genótipo , Cardiopatias Congênitas/genética , Humanos , Hibridização in Situ Fluorescente , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes
16.
Am J Otolaryngol ; 34(3): 230-5, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23374487

RESUMO

This report describes a three generation family with late onset bilateral sensorineural hearing impairment (BLSNHI) and tinnitus in which a novel mutation in the COCH gene was identified after a genome-wide linkage approach. The COCH gene is one of the few genes clinically examined when investigating the etiology of autosomal dominant late onset hearing impairment. Initially mutations in the COCH gene were only reported in exons 4 and 5, coding for the LCCL protein domain. More recently, additional mutations have been identified in exon 12, the only mutations identified outside of the LCCL domain. Currently clinical genetic testing for the COCH gene primarily focuses on identifying mutations in these three exons. In this study, we identify a novel mutation in the COCH gene in exon 11, which, like the exon 12 mutations, falls within the vWFA2 protein domain. This finding reinforces the need for clinical genetic screening of the COCH gene to be expanded beyond the current limited exon screening, as there is now more evidence to support that mutations in other areas of this gene are also causative of a similar form of late onset BLSNHI.


Assuntos
Proteínas da Matriz Extracelular/genética , Perda Auditiva Neurossensorial/genética , Zumbido/genética , Idade de Início , Análise Mutacional de DNA , Surdez/genética , Progressão da Doença , Éxons/genética , Genes Dominantes , Ligação Genética , Perda Auditiva Neurossensorial/epidemiologia , Humanos , Linhagem
17.
PLoS One ; 18(3): e0283463, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36961772

RESUMO

The molecular circadian clock is regulated by a transcriptional translational feedback loop. However, the post-translational control mechanisms are less understood. The NRON complex is a large ribonucleoprotein complex, consisting of a lncRNA and several proteins. Components of the complex play a distinct role in regulating protein phosphorylation, synthesis, stability, and translocation in cellular processes. This includes the NFAT and the circadian clock pathway. PSMD11 is a component of the NRON complex and a lid component of the 26S proteasome. Among the PSMD family members, PSMD11 has a more specific role in circadian clock function. Here, we used cell and biochemical approaches and characterized the role of PSMD11 in regulating the stability and nuclear translocation of circadian clock proteins. We used size exclusion chromatography to enrich the NRON complex in the cytosolic and nuclear fractions. More specifically, PSMD11 knockdown affected the abundance of PER2 and CRY2 proteins and the nuclear translocation of CRY1. This changed the relative abundance of CRY1 and CRY2 in the nucleus. Thus, this work defines the role of PSMD11 in the NRON complex regulating the nuclear translocation of circadian repressors, thereby enabling cellular circadian oscillations.


Assuntos
Relógios Circadianos , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Criptocromos/genética , Criptocromos/metabolismo , Proteínas CLOCK/genética , Núcleo Celular/metabolismo , Fatores de Transcrição ARNTL/metabolismo
18.
Clin Transl Gastroenterol ; 14(2): e00549, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36730289

RESUMO

INTRODUCTION: Chronotherapy is the timing of medication according to biological rhythms of the host to optimize drug efficacy and minimize toxicity. Efficacy and myelosuppression of azathioprine/6-mercaptopurine (AZA/6-MP) are correlated with the metabolite 6-thioguanine, while the metabolite 6-methylmercaptopurine correlates with hepatotoxicity. METHODS: This was a single-center, 10-week prospective crossover trial involving 26 participants with inactive inflammatory bowel disease (IBD) on a stable dose and time of AZA or 6-MP therapy. Participants were switched to the opposite delivery time (morning or evening) for 10 weeks, and metabolite measurements were at both time points. RESULTS: In the morning vs evening dosing, 6-thioguanine levels were 225.7 ± 155.1 vs 175.0 ± 106.9 ( P < 0.01), and 6-methylmercaptopurine levels were 825.1 ± 1,023.3 vs 2,395.3 ± 2,880.3 ( P < 0.01), with 69% (18 out of 26) of participants had better metabolite profiles in the morning. Participants with optimal dosing in the morning had an earlier chronotype by corrected midpoint of sleep. DISCUSSION: In the first study on a potential role of chronotherapy in IBD, we found (i) morning dosing of AZA or 6-MP resulted in more optimal metabolite profiles and (ii) host chronotype could help identify one-third of patients who would benefit from evening dosing. Circadian regulation of metabolic enzymes of AZA/6-MP activity in the liver is the likely cause of these differences. This pilot study confirms the need to incorporate chronotherapy in future multicenter clinical trials on IBD disease.


Assuntos
Doenças Inflamatórias Intestinais , Mercaptopurina , Humanos , Azatioprina , Cronoterapia , Estudos Cross-Over , Doenças Inflamatórias Intestinais/tratamento farmacológico , Mercaptopurina/uso terapêutico , Projetos Piloto , Estudos Prospectivos , Tioguanina/uso terapêutico
19.
Sleep ; 46(2)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36462188

RESUMO

STUDY OBJECTIVES: Genetics impacts sleep, yet, the molecular mechanisms underlying sleep regulation remain elusive. In this study, we built machine learning models to predict sleep genes based on their similarity to genes that are known to regulate sleep. METHODS: We trained a prediction model on thousands of published datasets, representing circadian, immune, sleep deprivation, and many other processes, using a manually curated list of 109 sleep genes. RESULTS: Our predictions fit with prior knowledge of sleep regulation and identified key genes and pathways to pursue in follow-up studies. As an example, we focused on the NF-κB pathway and showed that chronic activation of NF-κB in a genetic mouse model impacted the sleep-wake patterns. CONCLUSION: Our study highlights the power of machine learning in integrating prior knowledge and genome-wide data to study genetic regulation of complex behaviors such as sleep.


Assuntos
NF-kappa B , Sono , Animais , Camundongos , Ritmo Circadiano/genética , Regulação da Expressão Gênica , NF-kappa B/genética , Sono/genética , Sono/fisiologia , Privação do Sono/genética
20.
Chem Res Toxicol ; 25(10): 2117-26, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22768918

RESUMO

Benzo[a]pyrene (B[a]P), a major human carcinogen in combustion products such as cigarette smoke and diesel exhaust, is metabolically activated into DNA-reactive metabolites via three different enzymatic pathways. The pathways are the anti-(+)-benzo[a]pyrene 7,8-diol 9,10-epoxide pathway (P450/epoxide hydrolase catalyzed) (B[a]PDE), the benzo[a]pyrene o-quinone pathway (aldo ketose reductase (AKR) catalyzed) and the B[a]P radical cation pathway (P450 peroxidase catalyzed). We used a yeast p53 mutagenesis system to assess mutagenesis by B[a]P radical cations. Because radical cations are short-lived, they were generated in situ by reacting B[a]P with cumene hydroperoxide (CuOOH) and horse radish peroxidase (HRP) and then monitoring the generation of the more stable downstream products, B[a]P-1,6-dione and B[a]P-3,6-dione. On the basis of B[a]P-1,6 and 3,6-dione formation, approximately 4 µM of radical cation was generated. In the mutagenesis assays, the radical cations produced in situ showed a dose-dependent increase in mutagenicity from 0.25 µM to 10 µM B[a]P with no significant increase seen with further escalation to 50 µM B[a]P. However, mutagenesis was 200-fold less than with the AKR pathway derived B[a]P, 7-8-dione. Mutant p53 plasmids, which yield red colonies, were recovered from the yeast to study the pattern and spectrum of mutations. The mutation pattern observed was G to T (31%) > G to C (29%) > G to A (14%). The frequency of codons mutated by the B[a]P radical cations was essentially random and not enriched at known cancer hotspots. The quinone products of radical cations, B[a]P-1,6-dione and B[a]P-3,6-dione were more mutagenic than the radical cation reactions, but still less mutagenic than AKR derived B[a]P-7,8-dione. We conclude that B[a]P radical cations and their quinone products are weakly mutagenic in this yeast-based system compared to redox cycling PAH o-quinones.


Assuntos
Benzo(a)pireno/toxicidade , Mutagênese , Mutagênicos/toxicidade , Proteína Supressora de Tumor p53/genética , Benzo(a)pireno/metabolismo , Cátions/metabolismo , Cátions/toxicidade , Dano ao DNA/efeitos dos fármacos , Humanos , Mutagênicos/metabolismo , NADP/metabolismo , Oxirredução , Quinonas/metabolismo , Quinonas/toxicidade , Leveduras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA