Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 117(2): 404-415, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37856521

RESUMO

By conducting hierarchical clustering along a sliding window, we generated haplotypes across hundreds of re-sequenced genomes in a few hours. We leveraged our method to define cryptic introgressions underlying disease resistance in tomato (Solanum lycopersicum L.) and to discover resistant germplasm in the tomato seed bank. The genomes of 9 accessions with early blight (Alternaria linariae) disease resistance were newly sequenced and analyzed together with published sequences for 770 tomato and wild species accessions, most of which are available in germplasm collections. Identification of common ancestral haplotypes among resistant germplasm enabled rapid fine mapping of recently discovered quantitative trait loci (QTL) conferring resistance and the identification of possible causal variants. The source of the early blight QTL EB-9 was traced to a vintage tomato named 'Devon Surprise'. Another QTL, EB-5, as well as resistance to bacterial spot disease (Xanthomonas spp.), was traced to Hawaii 7998. A genomic survey of all accessions forecasted EB-9-derived resistance in several heirloom tomatoes, accessions of S. lycopersicum var. cerasiforme, and S. pimpinellifolium PI 37009. Our haplotype-based predictions were validated by screening the accessions against the causal pathogen. There was little evidence of EB-5 prevalence in surveyed contemporary germplasm, presenting an opportunity to bolster tomato disease resistance by adding this rare locus. Our work demonstrates practical insights that can be derived from the efficient processing of large genome-scale datasets, including rapid functional prediction of disease resistance QTL in diverse genetic backgrounds. Finally, our work finds more efficient ways to leverage public genetic resources for crop improvement.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Locos de Características Quantitativas/genética , Resistência à Doença/genética , Fenótipo , Genômica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38949619

RESUMO

The emergence of plant pathogens is often associated with waves of unique evolutionary and epidemiological events. Xanthomonas hortorum pv. gardneri is one of the major pathogens causing bacterial spot disease of tomatoes. After its first report in the 1950s, there were no formal reports on this pathogen until the 1990s, despite active global research on the pathogens that cause tomato and pepper bacterial spot disease. Given the recently documented global distribution of X. hortorum pv. gardneri, our objective was to examine genomic diversification associated with its emergence. We sequenced the genomes of X. hortorum pv. gardneri strains collected in eight countries to examine global population structure and pathways of emergence using phylodynamic analysis. We found that strains isolated post-1990 group by region of collection and show minimal impact of recombination on genetic variation. A period of rapid geographic expansion in X. hortorum pv. gardneri is associated with acquisition of a large plasmid conferring copper tolerance by horizontal transfer and coincides with the burgeoning hybrid tomato seed industry through the 1980s. The ancestry of X. hortorum pv. gardneri is consistent with introduction to hybrid tomato seed production and dissemination during the rapid increase in trade of hybrid seeds.

3.
Plant Dis ; 104(2): 423-429, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31804901

RESUMO

Bacterial spot of tomato is a foliar disease caused by four Xanthomonas species. Identifying genetic resistance in wild tomatoes and subsequent breeding of varieties has been a strategy to reduce the loss from this disease because control using pesticides has been ineffective. Three independent sources of resistance have been identified with quantitative trait loci (QTL) mapping to the centromeric region on chromosome 11. These sources are derived from Hawaii 7998 (QTL-11A), PI 114490 (QTL-11B), and LA2533 (QTL-11C). To determine which QTL introgression from chromosome 11 provides the greatest resistance to multiple species, we developed near-isogenic lines (NILs) using marker-assisted backcrossing. In parallel, we developed an NIL that contains Rx-4/Xv3, which provides major gene resistance to Xanthomonas perforans. Additionally, we combined Rx-4/Xv3 resistance with QTL-11A. These sources of resistance were independently introduced into the susceptible parent, OH88119. During a 3-year period from 2016 to 2018, we evaluated backcross-derived families and NILs from each source in independent field trials inoculated with X. perforans, X. euvesicatoria, or X. gardneri. Our results suggest that both QTL-11C and QTL-11A combined with Rx-4/Xv3 provide effective genetic resistance against multiple Xanthomonas species. In addition, we provide evidence for additive to dominant genetic action for the QTL introgressions.


Assuntos
Solanum lycopersicum , Xanthomonas , Havaí , Doenças das Plantas , Locos de Características Quantitativas
4.
Sensors (Basel) ; 20(13)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635217

RESUMO

Our objective was to develop a rapid technique for the non-invasive profiling and quantification of major tomato carotenoids using handheld Raman spectroscopy combined with pattern recognition techniques. A total of 106 samples with varying carotenoid profiles were provided by the Ohio State University Tomato Breeding and Genetics program and Lipman Family Farms (Naples, FL, USA). Non-destructive measurement from the surface of tomatoes was performed by a handheld Raman spectrometer equipped with a 1064 nm excitation laser, and data analysis was performed using soft independent modelling of class analogy (SIMCA)), artificial neural network (ANN), and partial least squares regression (PLSR) for classification and quantification purposes. High-performance liquid chromatography (HPLC) and UV/visible spectrophotometry were used for profiling and quantification of major carotenoids. Seven groups were identified based on their carotenoid profile, and supervised classification by SIMCA and ANN clustered samples with 93% and 100% accuracy based on a validation test data, respectively. All-trans-lycopene and ß-carotene levels were measured with a UV-visible spectrophotometer, and prediction models were developed using PLSR and ANN. Regression models developed with Raman spectra provided excellent prediction performance by ANN (rpre = 0.9, SEP = 1.1 mg/100 g) and PLSR (rpre = 0.87, SEP = 2.4 mg/100 g) for non-invasive determination of all-trans-lycopene in fruits. Although the number of samples were limited for ß-carotene quantification, PLSR modeling showed promising results (rcv = 0.99, SECV = 0.28 mg/100 g). Non-destructive evaluation of tomato carotenoids can be useful for tomato breeders as a simple and rapid tool for developing new varieties with novel profiles and for separating orange varieties with distinct carotenoids (high in ß-carotene and high in cis-lycopene).


Assuntos
Carotenoides/análise , Solanum lycopersicum/química , Ensaios de Triagem em Larga Escala , Humanos , Licopeno , Fenótipo , Melhoramento Vegetal , Análise Espectral Raman , beta Caroteno
5.
J Nutr ; 149(1): 26-35, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30476157

RESUMO

Background: Tomato and soy intake is associated with reduced prostate cancer risk or severity in epidemiologic and experimental studies. Objective: On the basis of the principle that multiple bioactives in tomato and soy may act on diverse anticancer pathways, we developed and characterized a tomato-soy juice for clinical trials. In this phase 2 dose-escalating study, we examined plasma, prostate, and urine biomarkers of carotenoid and isoflavone exposure. Methods: Men scheduled for prostatectomy were recruited to consume 0, 1, or 2 cans of tomato-soy juice/d before surgery (mean ± SD duration: 24 ± 4.6 d). The juice provided 20.6 mg lycopene and 66 mg isoflavone aglycone equivalents/177-mL can. Plasma carotenoids and urinary isoflavone metabolites were quantified by HPLC-photometric diode array and prostate carotenoids and isoflavones by HPLC-tandem mass spectrometry. Results: We documented significant dose-response increases (P < 0.05) in plasma concentrations of tomato carotenoids. Plasma concentrations were 1.86-, 1.69-, 1.73-, and 1.69-fold higher for lycopene, ß-carotene, phytoene, and phytofluene, respectively, for the 1-can/d group and 2.34-, 3.43-, 2.54-, and 2.29-fold higher, respectively, for the 2-cans/d group compared with 0 cans/d. Urinary isoflavones daidzein, genistein, and glycitein increased in a dose-dependent manner. Prostate carotenoid and isoflavone concentrations were not dose-dependent in this short intervention; yet, correlations between plasma carotenoid and urinary isoflavones with respective prostate concentrations were documented (R2 = 0.78 for lycopene, P < 0.001; R2 = 0.59 for dihydrodaidzein, P < 0.001). Secondary clustering analyses showed urinary isoflavone metabolite phenotypes. To our knowledge, this is the first demonstration of the phytoene and phytofluene in prostate tissue after a dietary intervention. Secondary analysis showed that the 2-cans/d group experienced a nonsignificant decrease in prostate-specific antigen slope compared with 0 cans/d (P = 0.078). Conclusion: These findings provide the foundation for evaluating a well-characterized tomato-soy juice in human clinical trials to define the impact on human prostate carcinogenesis. This trial is registered at clinicaltrials.gov as NCT01009736.


Assuntos
Bebidas/análise , Compostos Fitoquímicos/sangue , Compostos Fitoquímicos/urina , Neoplasias da Próstata/metabolismo , Solanum lycopersicum , Proteínas de Soja , Idoso , Biomarcadores/sangue , Carotenoides/química , Humanos , Masculino , Pessoa de Meia-Idade , Próstata/química , Neoplasias da Próstata/sangue , Neoplasias da Próstata/urina
6.
Theor Appl Genet ; 132(5): 1543-1554, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30758531

RESUMO

KEY MESSAGE: Ty-6 is a major resistance gene on chromosome 10 of tomato that provides resistance against monopartite and bipartite begomoviruses and complements resistance conferred by the known Ty-3 and ty-5 genes. Resistance to monopartite and bipartite begomoviruses is an important breeding objective for cultivated tomato. Several begomovirus resistance genes have been introgressed from related Solanum species and are available for breeding purposes. In the present study, we mapped an additional locus, Ty-6, to chromosome 10 of tomato. Ty-6 is effective against both monopartite Tomato yellow leaf curl virus (TYLCV) and bipartite Tomato mottle virus (ToMoV). Gene action is incomplete dominance, with an intermediate resistance response when Ty-6 is heterozygous. Analysis of populations segregating for Ty-6 along with Ty-3 or ty-5 indicates that the highest level of resistance against TYLCV is attained when Ty-6 is combined with an additional resistance allele. Our results also demonstrate that ty-5 is ineffective against ToMoV. Although multiple SNPs linked to Ty-6 were identified and can be used for breeding purposes, none of these were consistently polymorphic between Ty-6 and ty-6 breeding lines. Further research is underway to generate resequencing data for several Ty-6 inbred lines for the discovery of additional sequence polymorphisms that can be used for fine mapping and characterizing the Ty-6 locus.


Assuntos
Cromossomos de Plantas , Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/virologia , Solanum lycopersicum/genética , Begomovirus , Mapeamento Cromossômico , Solanum lycopersicum/virologia , Doenças das Plantas/genética , Locos de Características Quantitativas
7.
J Neurooncol ; 145(2): 385-390, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31606876

RESUMO

PURPOSE: The aim of this study was to determine whether a higher biological effective dose (BED) would result in improved local control in patients treated with fractionated stereotactic radiotherapy (FSRT) for their resected brain metastases. METHODS: Patients with newly diagnosed brain metastases without previous brain radiotherapy were retrospectively reviewed. Patients underwent surgical resection of at least one brain metastasis and were treated with adjuvant FSRT, delivering 25-36 Gy in 5-6 fractions. Outcomes were computed using Kaplan-Meier survival analysis and univariate analysis. RESULTS: Fifty-four patients with 63 post-operative cavities were included. Median follow-up was 16 months (3-60). Median metastasis size at diagnosis was 2.9 cm (0.6-8.1) and median planning target volume was 19.7 cm3 (6.3-68.1). Two-year local control (LC) was 83%. When stratified by dose, 2 years LC rate was 95.1% in those treated with 30-36 Gy in 5-6 fractions (BED10 of 48-57.6 Gy10) versus 59.1% lesions treated with 25 Gy in 5 fractions (BED10 of 37.5 Gy10) (p < 0.001). LC was not associated with resection cavity size. One year overall survival was 68.7%, and was independent of BED10. Symptomatic radiation necrosis occurred in 7.9% of patients and was not associated with dose. CONCLUSION: In the post-operative setting, high-dose FSRT (BED10 > 37.5 Gy10) were associated with a significantly higher rate of LC compared to lower BED regimens. Overall, 25 Gy in 5 fractions is not an adequate dose to control microscopic disease. If selecting a 5-fraction regimen, 30 Gy in five fractions appears to provide excellent tumor bed control.


Assuntos
Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/terapia , Quimiorradioterapia Adjuvante/métodos , Radiocirurgia/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/patologia , Fracionamento da Dose de Radiação , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento
8.
Phytopathology ; 108(3): 392-401, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29063822

RESUMO

Bacterial spot affects tomato crops (Solanum lycopersicum) grown under humid conditions. Major genes and quantitative trait loci (QTL) for resistance have been described, and multiple loci from diverse sources need to be combined to improve disease control. We investigated genomic selection (GS) prediction models for resistance to Xanthomonas euvesicatoria and experimentally evaluated the accuracy of these models. The training population consisted of 109 families combining resistance from four sources and directionally selected from a population of 1,100 individuals. The families were evaluated on a plot basis in replicated inoculated trials and genotyped with single nucleotide polymorphisms (SNP). We compared the prediction ability of models developed with 14 to 387 SNP. Genomic estimated breeding values (GEBV) were derived using Bayesian least absolute shrinkage and selection operator regression (BL) and ridge regression (RR). Evaluations were based on leave-one-out cross validation and on empirical observations in replicated field trials using the next generation of inbred progeny and a hybrid population resulting from selections in the training population. Prediction ability was evaluated based on correlations between GEBV and phenotypes (rg), percentage of coselection between genomic and phenotypic selection, and relative efficiency of selection (rg/rp). Results were similar with BL and RR models. Models using only markers previously identified as significantly associated with resistance but weighted based on GEBV and mixed models with markers associated with resistance treated as fixed effects and markers distributed in the genome treated as random effects offered greater accuracy and a high percentage of coselection. The accuracy of these models to predict the performance of progeny and hybrids exceeded the accuracy of phenotypic selection.


Assuntos
Marcadores Genéticos , Predisposição Genética para Doença , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Cruzamento , Ligação Genética , Modelos Genéticos
9.
Cancer ; 122(16): 2487-95, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27203227

RESUMO

BACKGROUND: Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) are commonly used antihypertensive medications that have been reported to affect aberrant angiogenesis and the dysregulated inflammatory response. Because of such mechanisms, it was hypothesized that these medications might affect the tumor response to neoadjuvant radiation in patients with rectal cancer. METHODS: One hundred fifteen patients who were treated with neoadjuvant radiation at the University of Wisconsin (UW) between 1999 and 2012 were identified. Univariate analyses were performed with anonymized patient data. In a second independent data set, 186 patients with rectal cancer who were treated with neoadjuvant radiation at the Queen's Medical Center of the University of Hawaii (UH) between 1995 and 2010 were identified. These data were independently analyzed as before. Multivariate analyses were performed with aggregate data. RESULTS: Among patients taking ACEIs/ARBs in the UW data set, a significant 3-fold increase in the rate of pathologic complete response (pCR) to neoadjuvant therapy (52% vs 17%, P = .001) was observed. This finding was confirmed in the UH data set, in which a significant 2-fold-increased pCR rate (24% vs 12%, P = .03) was observed. Identified patient and treatment characteristics were otherwise balanced between patients taking and not taking ACEIs/ARBs. No significant effect was observed on pCR rates with other medications, including statins, metformin, and aspirin. Multivariate analyses of aggregate data identified ACEI/ARB use as a strong predictor of pCR (odds ratio, 4.02; 95% confidence interval, 2.06-7.82; P < .001). CONCLUSIONS: The incidental use of ACEIs/ARBs among patients with rectal cancer is associated with a significantly increased rate of pCR after neoadjuvant treatment. Cancer 2016;122:2487-95. © 2016 American Cancer Society.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Retais/tratamento farmacológico , Adulto , Idoso , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Terapia Combinada , Sinergismo Farmacológico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Terapia Neoadjuvante , Gradação de Tumores , Estadiamento de Neoplasias , Radioterapia Adjuvante , Neoplasias Retais/mortalidade , Neoplasias Retais/patologia , Neoplasias Retais/radioterapia , Resultado do Tratamento
10.
Phytopathology ; 105(11): 1437-45, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26509802

RESUMO

Bacterial spot of tomato is caused by at least four species of Xanthomonas with multiple physiological races. We developed a complex breeding population for simultaneous discovery of marker-trait linkage, validation of existing quantitative trait loci (QTL), and pyramiding of resistance. Six advanced accessions with resistance from distinct sources were crossed in all combinations and their F1 hybrids were intercrossed. Over 1,100 segregating progeny were evaluated in the field following inoculation with X. euvesicatoria race T1 strains. We selected 5% of the most resistant and 5% of the most susceptible progeny for evaluation as plots in two subsequent replicated field trials inoculated with T1 and T3 (X. perforans) strains. The estimated heritability of T1 resistance was 0.32. In order to detect previously reported resistance genes, as well as novel QTL, we explored methods to correct for population structure and analysis based on single markers or haplotypes. Both single-point and haplotype analyses identified strong associations in the genomic regions known to carry Rx-3 (chromosome 5) and Rx-4/Xv3 (chromosome 11). Accounting for kinship and structure generally improved the fit of statistical models. Detection of known loci was improved by adding kinship or a combination of kinship and structure using a Q matrix from model-based clustering. Additional QTL were detected on chromosomes 1, 4, 6, and 7 for T1 resistance and chromosomes 2, 4, and 6 for T3 resistance (P < 0.01). Haplotype analysis improved our ability to trace the origin of positive alleles. These results demonstrate that both known and novel associations can be identified using complex breeding populations that have experienced directional selection.


Assuntos
Resistência à Doença/genética , Melhoramento Vegetal/métodos , Seleção Genética , Solanum lycopersicum/genética , Xanthomonas/fisiologia , Interações Hospedeiro-Patógeno , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Modelos Estatísticos , Fenótipo , Doenças das Plantas , Polimorfismo Genético , Locos de Características Quantitativas , Seleção Artificial
11.
Phytopathology ; 105(1): 126-34, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25496364

RESUMO

Mild variants of many viruses are able to protect infected plants from subsequent invasion by more severe variants of the same viruses through a process known as cross-protection. In the past, the cross-protective viral variants were commonly derived from mild field isolates that were sometimes genetically heterogeneous, providing variable levels of cross-protection. Here, we report a novel approach to rapidly generate cross-protective variants of the tomato-infecting Pepino mosaic virus (PepMV) independently of the availability of mild field isolates. Our approach sought to attenuate PepMV by mutating less conserved amino acid residues of the abundantly produced capsid protein (CP). These less-conserved amino acid residues were identified through multiple alignments of CPs of six potexviruses including PepMV, and were altered systematically to yield six PepMV mutants. These mutants were subsequently inoculated onto the model plant Nicotiana benthamiana, as well as tomato, to evaluate their accumulation levels, symptom severities, and cross-protection potentials. The mutant KD, in which the threonine (T) and alanine (A) residues at CP positions 66 and 67 were replaced with lysine (K) and aspartic acid (D), respectively, were found to accumulate to low levels in infected plants, cause very mild symptoms, and effectively protect both N. benthamiana and tomato against secondary infections by wild-type PepMV. These data suggest that our approach represents a simple, fast, and reliable way of generating attenuated viral variants capable of cross-protection.


Assuntos
Proteínas do Capsídeo/genética , Genoma Viral/genética , Nicotiana/virologia , Doenças das Plantas/virologia , Potexvirus/genética , Solanum lycopersicum/virologia , Sequência de Aminoácidos , Proteção Cruzada , DNA Complementar/química , DNA Complementar/genética , Engenharia Genética , Dados de Sequência Molecular , Mutagênese , Mutação , Folhas de Planta/virologia , Potexvirus/patogenicidade , Potexvirus/fisiologia , RNA Viral/genética , Alinhamento de Sequência , Vírion
13.
J Nutr ; 144(8): 1158-66, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24899156

RESUMO

Dietary lipids have been shown to increase bioavailability of provitamin A carotenoids from a single meal, but the effects of dietary lipids on conversion to vitamin A during absorption are essentially unknown. Based on previous animal studies, we hypothesized that the consumption of provitamin A carotenoids with dietary lipid would enhance conversion to vitamin A during absorption compared with the consumption of provitamin A carotenoids alone. Two separate sets of 12 healthy men and women were recruited for 2 randomized, 2-way crossover studies. One meal was served with fresh avocado (Persea americana Mill), cultivated variety Hass (delivering 23 g of lipid), and a second meal was served without avocado. In study 1, the source of provitamin A carotenoids was a tomato sauce made from a novel, high-ß-carotene variety of tomatoes (delivering 33.7 mg of ß-carotene). In study 2, the source of provitamin A carotenoids was raw carrots (delivering 27.3 mg of ß-carotene and 18.7 mg of α-carotene). Postprandial blood samples were taken over 12 h, and provitamin A carotenoids and vitamin A were quantified in triglyceride-rich lipoprotein fractions to determine baseline-corrected area under the concentration-vs.-time curve. Consumption of lipid-rich avocado enhanced the absorption of ß-carotene from study 1 by 2.4-fold (P < 0.0001). In study 2, the absorption of ß-carotene and α-carotene increased by 6.6- and 4.8-fold, respectively (P < 0.0001 for both). Most notably, consumption of avocado enhanced the efficiency of conversion to vitamin A (as measured by retinyl esters) by 4.6-fold in study 1 (P < 0.0001) and 12.6-fold in study 2 (P = 0.0013). These observations highlight the importance of provitamin A carotenoid consumption with a lipid-rich food such as avocado for maximum absorption and conversion to vitamin A, especially in populations in which vitamin A deficiency is prevalent. This trial was registered at clinicaltrials.gov as NCT01432210.


Assuntos
Daucus carota/química , Persea , Período Pós-Prandial/fisiologia , Solanum lycopersicum/química , Vitamina A/farmacocinética , Adulto , Disponibilidade Biológica , Carotenoides/farmacocinética , Estudos Cross-Over , Dieta , Feminino , Voluntários Saudáveis , Humanos , Estilo de Vida , Lipoproteínas/metabolismo , Masculino , Inquéritos e Questionários , Triglicerídeos/metabolismo , Adulto Jovem , beta Caroteno/farmacocinética
14.
Theor Appl Genet ; 127(4): 867-80, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24500307

RESUMO

KEY MESSAGE: Novel and previously known resistance loci for six phylogenetically diverse viruses were tightly clustered on chromosomes 2, 3, 6 and 10 in the multiply virus-resistant maize inbred line, Oh1VI. Virus diseases in maize can cause severe yield reductions that threaten crop production and food supplies in some regions of the world. Genetic resistance to different viruses has been characterized in maize populations in diverse environments using different screening techniques, and resistance loci have been mapped to all maize chromosomes. The maize inbred line, Oh1VI, is resistant to at least ten viruses, including viruses in five different families. To determine the genes and inheritance mechanisms responsible for the multiple virus resistance in this line, F1 hybrids, F2 progeny and a recombinant inbred line (RIL) population derived from a cross of Oh1VI and the virus-susceptible inbred line Oh28 were evaluated. Progeny were screened for their responses to Maize dwarf mosaic virus, Sugarcane mosaic virus, Wheat streak mosaic virus, Maize chlorotic dwarf virus, Maize fine streak virus, and Maize mosaic virus. Depending on the virus, dominant, recessive, or additive gene effects were responsible for the resistance observed in F1 plants. One to three gene models explained the observed segregation of resistance in the F2 generation for all six viruses. Composite interval mapping in the RIL population identified 17 resistance QTLs associated with the six viruses. Of these, 15 were clustered in specific regions of chr. 2, 3, 6, and 10. It is unknown whether these QTL clusters contain single or multiple virus resistance genes, but the coupling phase linkage of genes conferring resistance to multiple virus diseases in this population could facilitate breeding efforts to develop multi-virus resistant crops.


Assuntos
Resistência à Doença/genética , Endogamia , Doenças das Plantas/genética , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Zea mays/genética , Zea mays/virologia , Mapeamento Cromossômico , Cruzamentos Genéticos , Progressão da Doença , Padrões de Herança/genética , Fenótipo , Doenças das Plantas/imunologia , Locos de Características Quantitativas/genética , Recombinação Genética/genética
15.
Mol Nutr Food Res ; 68(4): e2300239, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38212250

RESUMO

SCOPE: Tomato consumption is associated with many health benefits including lowered risk for developing certain cancers. It is hypothesized that tomato phytochemicals are transported to the liver and other tissues where they alter gene expression in ways that lead to favorable health outcomes. However, the effects of tomato consumption on mammalian liver gene expression and chemical profile are not well defined. METHODS AND RESULTS: The study hypothesizes that tomato consumption would alter mouse liver transcriptomes and metabolomes compared to a control diet. C57BL/6J mice (n = 11-12/group) are fed a macronutrient matched diet containing either 10% red tomato, 10% tangerine tomato, or no tomato powder for 6 weeks after weaning. RNA-Seq followed by gene set enrichment analyses indicates that tomato type and consumption, in general, altered expression of phase I and II xenobiotic metabolism genes. Untargeted metabolomics experiments reveal distinct clustering between control and tomato fed animals. Nineteen molecular formulas (representing 75 chemical features) are identified or tentatively identified as steroidal alkaloids and isomers of their phase I and II metabolites; many of which are reported for the first time in mammals. CONCLUSION: These data together suggest tomato consumption may impart benefits partly through enhancing detoxification potential.


Assuntos
Alcaloides , Solanum lycopersicum , Camundongos , Animais , Xenobióticos/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Metabolômica/métodos , Perfilação da Expressão Gênica , Alcaloides/farmacologia , Esteroides/metabolismo , Mamíferos
16.
Plant Dis ; 97(11): 1418-1423, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30708497

RESUMO

Maize rayado fino virus (MRFV) causes one of the most important virus diseases of maize in America. Severe yield losses, ranging from 10 to 50% in landraces to nearly 100% in contemporary cultivars, have been reported. Resistance has been reported in maize populations, but few resistant inbred lines have been identified. Maize inbred lines representing the range of diversity in the cultivated types and selected lines known to be resistant to other viruses were evaluated to identify novel sources of resistance to MRFV. The virus was transmitted to maize seedlings using the vector Dalbulus maidis, and disease incidence and severity were evaluated beginning 7 days postinoculation. Most of the 36 lines tested were susceptible to MRFV, with mean disease incidence ranging from 21 to 96%, and severity from 1.0 to 4.3 (using a 0 to 5 severity scale). A few genotypes, including CML333 and Ki11, showed intermediate levels of resistance, with 14 and 10% incidence, respectively. Novel sources of resistance, with incidence of less than 5% and severity ratings of 0.4 or less, included the inbred lines Oh1VI, CML287, and Cuba. In Oh1VI, resistance appeared to be dominant, and segregation of resistance in F2 plants was consistent with one or two resistance genes. The discovery of novel sources of resistance in maize inbred lines will facilitate the identification of virus resistance genes and their incorporation into breeding programs.

17.
Pract Radiat Oncol ; 13(4): 340-345, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36709044

RESUMO

Primary radiation therapy using interstitial brachytherapy (IBT) provides excellent local tumor control for early-stage squamous cell carcinoma of the lip. Technical aspects of treatment are important to optimize outcomes. In this report, we discuss patient selection criteria, procedural details, and dosimetric considerations for performing IBT for cancers of the lip. Catheters are inserted across the length of tumor entering and exiting approximately 5 mm beyond the palpable tumor extent. A custom mouthpiece is fabricated to facilitate normal tissue sparing. Patients undergo computed tomography imaging, the gross tumor volume is contoured based on physical examination and computed tomography findings, and an individualized brachytherapy plan is generated with the goals of achieving gross tumor volume D90% ≥ 90% and minimizing V150%. Ten patients with primary (n = 8) or recurrent (n = 2) cancers of the lip who received high-dose-rate lip IBT using 2.0- to 2.5-week treatment regimens are described (median prescription: 47.6 Gy in 14 fractions of 3.4 Gy). Local tumor control was 100%. There were no cases of acute grade ≥4 or late grade ≥2 toxicity, and cosmesis scores were graded as good to excellent in all patients. IBT represents an excellent treatment option for patients with lip squamous cell carcinoma. With careful attention to technical considerations furthered described in the present report, high rates of tumor control, low rates of toxicity, and favorable esthetic and functional outcomes can be achieved with IBT for lip cancer.


Assuntos
Braquiterapia , Carcinoma de Células Escamosas , Neoplasias Labiais , Humanos , Braquiterapia/métodos , Neoplasias Labiais/radioterapia , Neoplasias Labiais/etiologia , Carcinoma de Células Escamosas/patologia , Terapia Combinada , Radiometria , Dosagem Radioterapêutica
18.
Theor Appl Genet ; 124(3): 533-42, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22038434

RESUMO

Bacterial spot caused by Xanthomonas euvesicatoria, X. vesicatoria, X. perforans and X. gardneri is one of the most destructive diseases in tomatoes (Solanum lycopersicum L.) growing in tropical and subtropical regions. Exploring resistance genes from diverse germplasm and incorporating them into cultivated varieties are critical for controlling this disease. The S. pimpinellifolium accession PI128216 was reported to carry the Rx4 gene on chromosome 11 conferring hypersensitivity and field resistance to race T3. To facilitate the use of marker-assisted selection in breeding and map-based cloning of the gene, an F(2) population derived from a cross between the susceptible variety OH88119 and the resistant accession PI128216 was created for fine mapping of the Rx4 gene. Using 18 markers developed through various approaches, we mapped the gene to a 45.1-kb region between two markers pcc17 and pcc14 on chromosome 11. A NBS-LRR class of resistance gene was identified as the candidate for the Rx4 gene based on annotation results from the International Tomato Annotation Group. Comparison of the genomic DNA sequences of the Rx4 alleles in PI128216 and OH88119 revealed a 6-bp insertion/deletion (InDel) and eight SNPs. The InDel marker was successfully used to distinguish resistance and susceptibility in 12 tomato lines. These results will facilitate cloning the Rx4 gene and provide a useful tool for marker-assisted selection of this gene in tomato breeding programs.


Assuntos
Cruzamento/métodos , Resistência à Doença/genética , Genes de Plantas/genética , Doenças das Plantas/microbiologia , Solanum lycopersicum/genética , Xanthomonas , Sequência de Bases , Mapeamento Cromossômico , Cruzamentos Genéticos , Primers do DNA/genética , Estudos de Associação Genética , Marcadores Genéticos , Solanum lycopersicum/microbiologia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Especificidade da Espécie
19.
Plant Genome ; 15(2): e20192, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35184399

RESUMO

The tomato (Solanum spp.) clade of Solanaceae features a unique assortment of cholesterol-derived steroidal alkaloids. However, little quantitative data exists reporting the profile and concentration of these alkaloids across diverse fruit germplasm. To address the lack of knowledge regarding the chemical diversity, concentration, and genetic architecture controlling tomato steroidal alkaloids, we quantitatively profiled and genotyped two tomato populations representing diversity in the red-fruited clade. We grew 107 genetically diverse fresh market, processing, landrace, and wild tomato in multiple environments. Nine steroidal alkaloid groups were quantified using ultra-high performance liquid chromatography tandem mass spectrometry. The diversity panel and a biparental population segregating for high alpha-tomatine were genotyped to identify and validate quantitative trait loci (QTL) associated with steroidal alkaloids. Landraces and wild material exhibited higher alkaloid concentrations and more chemical diversity. Average total content of steroidal alkaloids, often dominated by lycoperoside F/G/esculeoside A, ranged from 1.9 to 23.3 mg 100 g-1 fresh wt. across accessions. Landrace and wild cherry accessions distinctly clustered based on elevated concentrations of early or late-pathway steroidal alkaloids. Significant correlations were observed among alkaloids from the early and late parts of the biosynthetic pathway in a species-dependent manner. A QTL controlling multiple, early steroidal alkaloid pathway intermediates on chromosome 3 was identified by genome-wide association studies (GWAS) and validated in a backcross population. Overall, tomato steroidal alkaloids are diverse in the red-fruited clade and their biosynthesis is regulated in a coordinated manner.


Assuntos
Alcaloides , Solanum lycopersicum , Alcaloides/análise , Alcaloides/química , Frutas/química , Frutas/genética , Estudo de Associação Genômica Ampla , Solanum lycopersicum/genética , Locos de Características Quantitativas
20.
Front Plant Sci ; 13: 947538, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968091

RESUMO

Crop wild relatives have been used as a source of genetic diversity for over one hundred years. The wild tomato relative Solanum galapagense accession LA1141 demonstrates the ability to tolerate deficit irrigation, making it a potential resource for crop improvement. Accessing traits from LA1141 through introgression may improve the response of cultivated tomatoes grown in water-limited environments. Canopy temperature is a proxy for physiological traits which are challenging to measure efficiently and may be related to water deficit tolerance. We optimized phenotypic evaluation based on variance partitioning and further show that objective phenotyping methods coupled with genomic prediction lead to gain under selection for water deficit tolerance. The objectives of this work were to improve phenotyping workflows for measuring canopy temperature, mapping quantitative trait loci (QTLs) from LA1141 that contribute to water deficit tolerance and comparing selection strategies. The phenotypic variance attributed to genetic causes for canopy temperature was higher when estimated from thermal images relative to estimates based on an infrared thermometer. Composite interval mapping using BC2S3 families, genotyped with single nucleotide polymorphisms, suggested that accession LA1141 contributed alleles that lower canopy temperature and increase plant turgor under water deficit. QTLs for lower canopy temperature were mapped to chromosomes 1 and 6 and explained between 6.6 and 9.5% of the total phenotypic variance. QTLs for higher leaf turgor were detected on chromosomes 5 and 7 and explained between 6.8 and 9.1% of the variance. We advanced tolerant BC2S3 families to the BC2S5 generation using selection indices based on phenotypic values and genomic estimated breeding values (GEBVs). Phenotypic, genomic, and combined selection strategies demonstrated gain under selection and improved performance compared to randomly advanced BC2S5 progenies. Leaf turgor, canopy temperature, stomatal conductance, and vapor pressure deficit (VPD) were evaluated and compared in BC2S5 progenies grown under deficit irrigation. Progenies co-selected for phenotypic values and GEBVs wilted less, had significantly lower canopy temperature, higher stomatal conductance, and lower VPD than randomly advanced lines. The fruit size of water deficit tolerant selections was small compared to the recurrent parent. However, lines with acceptable yield, canopy width, and quality parameters were recovered. These results suggest that we can create selection indices to improve water deficit tolerance in a recurrent parent background, and additional crossing and evaluation are warranted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA