Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(7): 1584-1600, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38779855

RESUMO

BACKGROUND: Analysis of vascular networks is an essential step to unravel the mechanisms regulating the physiological and pathological organization of blood vessels. So far, most of the analyses are performed using 2-dimensional projections of 3-dimensional (3D) networks, a strategy that has several obvious shortcomings. For instance, it does not capture the true geometry of the vasculature and generates artifacts on vessel connectivity. These limitations are accepted in the field because manual analysis of 3D vascular networks is a laborious and complex process that is often prohibitive for large volumes. METHODS: To overcome these issues, we developed 3DVascNet, a deep learning-based software for automated segmentation and quantification of 3D retinal vascular networks. 3DVascNet performs segmentation based on a deep learning model, and it quantifies vascular morphometric parameters such as vessel density, branch length, vessel radius, and branching point density. We tested the performance of 3DVascNet using a large data set of 3D microscopy images of mouse retinal blood vessels. RESULTS: We demonstrated that 3DVascNet efficiently segments vascular networks in 3D and that vascular morphometric parameters capture phenotypes detected by using manual segmentation and quantification in 2 dimension. In addition, we showed that, despite being trained on retinal images, 3DVascNet has high generalization capability and successfully segments images originating from other data sets and organs. CONCLUSIONS: Overall, we present 3DVascNet, a freely available software that includes a user-friendly graphical interface for researchers with no programming experience, which will greatly facilitate the ability to study vascular networks in 3D in health and disease. Moreover, the source code of 3DVascNet is publicly available, thus it can be easily extended for the analysis of other 3D vascular networks by other users.


Assuntos
Aprendizado Profundo , Imageamento Tridimensional , Vasos Retinianos , Software , Animais , Vasos Retinianos/diagnóstico por imagem , Imageamento Tridimensional/métodos , Camundongos , Camundongos Endogâmicos C57BL , Interpretação de Imagem Assistida por Computador , Automação , Reprodutibilidade dos Testes
2.
Biol Imaging ; 3: e4, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38487691

RESUMO

Drug discovery uses high throughput screening to identify compounds that interact with a molecular target or that alter a phenotype favorably. The cautious selection of molecules used for such a screening is instrumental and is tightly related to the hit rate. In this work, we wondered if cell painting, a general-purpose image-based assay, could be used as an efficient proxy for compound selection, thus increasing the success rate of a specific assay. To this end, we considered cell painting images with 30,000 molecules treatments, and selected compounds that produced a visual effect close to the positive control of an assay, by using the Frechet Inception Distance. We then compared the hit rates of such a preselection with what was actually obtained in real screening campaigns. As a result, cell painting would have permitted a significant increase in the success rate and, even for one of the assays, would have allowed to reach 80% of the hits with 10 times fewer compounds to test. We conclude that images of a cell painting assay can be directly used for compound selection prior to screening, and we provide a simple quantitative approach in order to do so.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA