Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Biol ; 20(8): e3001702, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35925899

RESUMO

Cycling of organic carbon in the ocean has the potential to mitigate or exacerbate global climate change, but major questions remain about the environmental controls on organic carbon flux in the coastal zone. Here, we used a field experiment distributed across 28° of latitude, and the entire range of 2 dominant kelp species in the northern hemisphere, to measure decomposition rates of kelp detritus on the seafloor in relation to local environmental factors. Detritus decomposition in both species were strongly related to ocean temperature and initial carbon content, with higher rates of biomass loss at lower latitudes with warmer temperatures. Our experiment showed slow overall decomposition and turnover of kelp detritus and modeling of coastal residence times at our study sites revealed that a significant portion of this production can remain intact long enough to reach deep marine sinks. The results suggest that decomposition of these kelp species could accelerate with ocean warming and that low-latitude kelp forests could experience the greatest increase in remineralization with a 9% to 42% reduced potential for transport to long-term ocean sinks under short-term (RCP4.5) and long-term (RCP8.5) warming scenarios. However, slow decomposition at high latitudes, where kelp abundance is predicted to expand, indicates potential for increasing kelp-carbon sinks in cooler (northern) regions. Our findings reveal an important latitudinal gradient in coastal ecosystem function that provides an improved capacity to predict the implications of ocean warming on carbon cycling. Broad-scale patterns in organic carbon decomposition revealed here can be used to identify hotspots of carbon sequestration potential and resolve relationships between carbon cycling processes and ocean climate at a global scale.


Assuntos
Kelp , Carbono , Sequestro de Carbono , Mudança Climática , Ecossistema
2.
J Phycol ; 58(2): 198-207, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35092031

RESUMO

The UN Decade of Ecosystem Restoration is a response to the urgent need to substantially accelerate and upscale ecological restoration to secure Earth's sustainable future. Globally, restoration commitments have focused overwhelmingly on terrestrial forests. In contrast, despite a strong value proposition, efforts to restore seaweed forests lag far behind other major ecosystems and continue to be dominated by small-scale, short-term academic experiments. However, seaweed forest restoration can match the scale of damage and threat if moved from academia into the hands of community groups, industry, and restoration practitioners. Connecting two rapidly growing sectors in the Blue Economy-seaweed cultivation and the restoration industry-can transform marine forest restoration into a commercial-scale enterprise that can make a significant contribution to global restoration efforts.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Florestas , Alga Marinha , Alga Marinha/crescimento & desenvolvimento
3.
Oecologia ; 196(2): 441-453, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34009471

RESUMO

As the environment is getting warmer and species are redistributed, consumers can be forced to adjust their interactions with available prey, and this could have cascading effects within food webs. To better understand the capacity for foraging flexibility, our study aimed to determine the diet variability of an ectotherm omnivore inhabiting kelp forests, the sea urchin Echinus esculentus, along its entire latitudinal distribution in the northeast Atlantic. Using a combination of gut content and stable isotope analyses, we determined the diet and trophic position of sea urchins at sites in Portugal (42° N), France (49° N), southern Norway (63° N), and northern Norway (70° N), and related these results to the local abundance and distribution of putative food items. With mean estimated trophic levels ranging from 2.4 to 4.6, omnivory and diet varied substantially within and between sites but not across latitudes. Diet composition generally reflected prey availability within epiphyte or understorey assemblages, with local affinities demonstrating that the sea urchin adjusts its foraging to match the small-scale distribution of food items. A net "preference" for epiphytic food sources was found in northern Norway, where understorey food was limited compared to other regions. We conclude that diet change may occur in response to food source redistribution at multiple spatial scales (microhabitats, sites, regions). Across these scales, the way that key consumers alter their foraging in response to food availability can have important implication for food web dynamics and ecosystem functions along current and future environmental gradients.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Comportamento Alimentar , França , Noruega , Ouriços-do-Mar
4.
Mar Genomics ; 74: 101097, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485291

RESUMO

Historically famous for their negative impact on human-built marine wood structures, mollusc shipworms play a central ecological role in marine ecosystems. Their association with bacterial symbionts, providing cellulolytic and nitrogen-fixing activities, underscores their exceptional wood-eating and wood-boring behaviours, improving energy transfer and the recycling of essential nutrients locked in the wood cellulose. Importantly, from a molecular standpoint, a minute of omic resources are available from this lineage of Bivalvia. Here, we produced and assembled a transcriptome from the globally distributed naval shipworm, Teredo navalis (family Teredinidae). The transcriptome was obtained by sequencing the total RNA from five equidistant segments of the whole body of a T. navalis specimen. The quality of the produced assembly was accessed with several statistics, revealing a highly contiguous (1194 N50) and complete (over 90% BUSCO scores for Eukaryote and Metazoan databases) transcriptome, with nearly 38,000 predicted ORF, more than half being functionally annotated. Our findings pave the way to investigate the unique evolutionary biology of these highly modified bivalves and lay the foundation for an adequate gene annotation of a full genome sequence of the species.


Assuntos
Bivalves , Ecossistema , Humanos , Animais , Transcriptoma , Bivalves/genética , Evolução Biológica , Madeira , Anotação de Sequência Molecular
5.
Sci Rep ; 13(1): 11720, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474712

RESUMO

Anthropogenic climate change, particularly seawater warming, is expected to drive quick shifts in marine species distribution transforming coastal communities. These shifts in distribution will be particularly noticeable in biogeographical transition zones. The continental Portuguese coast stretches from north to south along 900 km. Despite this short spatial scale, the strong physical gradient intensified by the Iberian upwelling creates a transition zone where seaweed species from boreal and Lusitanian-Mediterranean origin coexist. On the northern coast, kelp marine forests thrive in the cold, nutrient-rich oceanic waters. In the south, communities resemble Mediterranean-type seaweed assemblages and are dominated by turfs. Recent evidence suggests that in these coastal areas, marine intertidal species are shifting their distribution edges as a result of rising seawater temperatures. Taking advantage of previous abundance data collected in 2012 from subtidal seaweed communities, a new sampling program was carried out in the same regions in 2018 to assess recent changes. The results confirmed the latitudinal gradient in macroalgal assemblages. More importantly we found significant structural and functional changes in a short period of six years, with regional increases of abundance of warm-affinity species, small seaweeds like turfs. Species richness, diversity, and biomass increase, all accompanied by an increase of community temperature index (CTI). Our findings suggest that subtidal seaweed communities in this transitional area have undergone major changes within a few years. Evidence of "fast tropicalization" of the subtidal communities of the Portuguese coast are strong indication of the effects of anthropic climate change over coastal assemblages.


Assuntos
Kelp , Alga Marinha , Ecossistema , Biomassa , Temperatura
6.
Biomolecules ; 10(4)2020 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290525

RESUMO

Nuclear receptors (NRs) are transcription factors accomplishing a multiplicity of functions, essential for organismal homeostasis. Among their numerous members, the retinoid X receptor (RXR) is a central player of the endocrine system, with a singular ability to operate as a homodimer or a heterodimer with other NRs. Additionally, RXR has been found to be a critical actor in various processes of endocrine disruption resulting from the exposure to a known class of xenobiotics termed organotins (e.g., tributyltin (TBT)), including imposex in gastropod molluscs and lipid perturbation across different metazoan lineages. Thus, given its prominent physiological and endocrine role, RXR is present in the genomes of most extant metazoan species examined to date. Here, we expand on the phylogenetic distribution of RXR across the metazoan tree of life by exploring multiple next-generation sequencing projects of protostome lineages. By addressing amino acid residue conservation in combination with cell-based functional assays, we show that RXR induction by 9-cis retinoic acid (9cisRA) and TBT is conserved in more phyla than previously described. Yet, our results highlight distinct activation efficacies and alternative modes of RXR exploitation by the organotin TBT, emphasizing the need for broader species sampling to clarify the mechanistic activation of RXR.


Assuntos
Evolução Molecular , Compostos Orgânicos de Estanho/metabolismo , Receptores X de Retinoides/genética , Retinoides/metabolismo , Sequência de Aminoácidos , Animais , Teorema de Bayes , Células COS , Chlorocebus aethiops , Mutagênese/genética , Filogenia , Ligação Proteica , Receptores X de Retinoides/química
7.
Mar Environ Res ; 151: 104747, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31230707

RESUMO

World's oceans are warming, and recent studies suggest that the Iberian upwelling system may be weakening. To understand the potential consequences of both trends, six intertidal seaweeds that recently followed opposite upward and downward abundance shifts in the Iberian upwelling region were exposed for six weeks to conditions simulating present and warmed scenarios, combined with nutrient treatments emulating the influence and absence of the upwelling. Unlike expectations, a high nutrient supply did not ameliorate the effects of warming. Instead, warming slowed down growth in four seaweeds and accelerated the photosynthesis of downward seaweeds only if nutrients were abundant. In a weakened upwelling scenario, nutrient limitation might more strongly influence the performance of both upward and downward seaweeds than warming. With a normally functioning upwelling, warming might be more detrimental to the performance of some downward seaweeds as they might would lose their ability to benefit from the extra nutrient input.


Assuntos
Ecossistema , Nutrientes , Alga Marinha , Oceanos e Mares , Fotossíntese , Alga Marinha/fisiologia
8.
Genes (Basel) ; 10(12)2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795452

RESUMO

Signalling molecules and their cognate receptors are central components of the Metazoa endocrine system. Defining their presence or absence in extant animal lineages is critical to accurately devise evolutionary patterns, physiological shifts and the impact of endocrine disrupting chemicals. Here, we address the evolution of retinoic acid (RA) signalling in the Priapulida worm, Priapuluscaudatus Lamarck, 1816, an Ecdysozoa. RA signalling has been shown to be central to chordate endocrine homeostasis, participating in multiple developmental and physiological processes. Priapulids, with their slow rate of molecular evolution and phylogenetic position, represent a key taxon to investigate the early phases of Ecdysozoa evolution. By exploring a draft genome assembly, we show, by means of phylogenetics and functional assays, that an orthologue of the nuclear receptor retinoic acid receptor (RAR) subfamily, a central mediator of RA signalling, is present in Ecdysozoa, contrary to previous perception. We further demonstrate that the Priapulida RAR displays low-affinity for retinoids (similar to annelids), and is not responsive to common endocrine disruptors acting via RAR. Our findings provide a timeline for RA signalling evolution in the Bilateria and give support to the hypothesis that the increase in RA affinity towards RAR is a late acquisition in the evolution of the Metazoa.


Assuntos
Organismos Aquáticos/genética , Receptores do Ácido Retinoico/genética , Análise de Sequência de DNA/métodos , Animais , Evolução Molecular , Filogenia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA