Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.693
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nat Immunol ; 22(5): 607-619, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33833438

RESUMO

FOXP3 deficiency in mice and in patients with immune dysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome results in fatal autoimmunity by altering regulatory T (Treg) cells. CD4+ T cells in patients with IPEX syndrome and Foxp3-deficient mice were analyzed by single-cell cytometry and RNA-sequencing, revealing heterogeneous Treg-like cells, some very similar to normal Treg cells, others more distant. Conventional T cells showed no widespread activation or helper T cell bias, but a monomorphic disease signature affected all CD4+ T cells. This signature proved to be cell extrinsic since it was extinguished in mixed bone marrow chimeric mice and heterozygous mothers of patients with IPEX syndrome. Normal Treg cells exerted dominant suppression, quenching the disease signature and revealing in mutant Treg-like cells a small cluster of genes regulated cell-intrinsically by FOXP3, including key homeostatic regulators. We propose a two-step pathogenesis model: cell-intrinsic downregulation of core FOXP3-dependent genes destabilizes Treg cells, de-repressing systemic mediators that imprint the disease signature on all T cells, furthering Treg cell dysfunction. Accordingly, interleukin-2 treatment improved the Treg-like compartment and survival.


Assuntos
Diabetes Mellitus Tipo 1/congênito , Diarreia/genética , Fatores de Transcrição Forkhead/deficiência , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças do Sistema Imunitário/congênito , Linfócitos T Reguladores/imunologia , Adolescente , Animais , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Conjuntos de Dados como Assunto , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Diarreia/sangue , Diarreia/imunologia , Modelos Animais de Doenças , Citometria de Fluxo , Fatores de Transcrição Forkhead/genética , Doenças Genéticas Ligadas ao Cromossomo X/sangue , Doenças Genéticas Ligadas ao Cromossomo X/imunologia , Humanos , Doenças do Sistema Imunitário/sangue , Doenças do Sistema Imunitário/genética , Doenças do Sistema Imunitário/imunologia , Lactente , Masculino , Camundongos , Camundongos Transgênicos , Mutação , RNA-Seq , Análise de Célula Única , Linfócitos T Reguladores/metabolismo , Adulto Jovem
2.
Cell ; 173(6): 1356-1369.e22, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29856954

RESUMO

Genetic changes causing brain size expansion in human evolution have remained elusive. Notch signaling is essential for radial glia stem cell proliferation and is a determinant of neuronal number in the mammalian cortex. We find that three paralogs of human-specific NOTCH2NL are highly expressed in radial glia. Functional analysis reveals that different alleles of NOTCH2NL have varying potencies to enhance Notch signaling by interacting directly with NOTCH receptors. Consistent with a role in Notch signaling, NOTCH2NL ectopic expression delays differentiation of neuronal progenitors, while deletion accelerates differentiation into cortical neurons. Furthermore, NOTCH2NL genes provide the breakpoints in 1q21.1 distal deletion/duplication syndrome, where duplications are associated with macrocephaly and autism and deletions with microcephaly and schizophrenia. Thus, the emergence of human-specific NOTCH2NL genes may have contributed to the rapid evolution of the larger human neocortex, accompanied by loss of genomic stability at the 1q21.1 locus and resulting recurrent neurodevelopmental disorders.


Assuntos
Encéfalo/embriologia , Córtex Cerebral/fisiologia , Neurogênese/fisiologia , Receptor Notch2/metabolismo , Transdução de Sinais , Animais , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Feminino , Deleção de Genes , Genes Reporter , Gorilla gorilla , Células HEK293 , Humanos , Neocórtex/citologia , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Pan troglodytes , Receptor Notch2/genética , Análise de Sequência de RNA
3.
Cell ; 171(2): 273-285, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28985560

RESUMO

Ferroptosis is a form of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides to lethal levels. Emerging evidence suggests that ferroptosis represents an ancient vulnerability caused by the incorporation of polyunsaturated fatty acids into cellular membranes, and cells have developed complex systems that exploit and defend against this vulnerability in different contexts. The sensitivity to ferroptosis is tightly linked to numerous biological processes, including amino acid, iron, and polyunsaturated fatty acid metabolism, and the biosynthesis of glutathione, phospholipids, NADPH, and coenzyme Q10. Ferroptosis has been implicated in the pathological cell death associated with degenerative diseases (i.e., Alzheimer's, Huntington's, and Parkinson's diseases), carcinogenesis, stroke, intracerebral hemorrhage, traumatic brain injury, ischemia-reperfusion injury, and kidney degeneration in mammals and is also implicated in heat stress in plants. Ferroptosis may also have a tumor-suppressor function that could be harnessed for cancer therapy. This Primer reviews the mechanisms underlying ferroptosis, highlights connections to other areas of biology and medicine, and recommends tools and guidelines for studying this emerging form of regulated cell death.


Assuntos
Morte Celular , Animais , Apoptose , Humanos , Ferro/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
4.
Nature ; 624(7990): 164-172, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38057571

RESUMO

Animal studies show aging varies between individuals as well as between organs within an individual1-4, but whether this is true in humans and its effect on age-related diseases is unknown. We utilized levels of human blood plasma proteins originating from specific organs to measure organ-specific aging differences in living individuals. Using machine learning models, we analysed aging in 11 major organs and estimated organ age reproducibly in five independent cohorts encompassing 5,676 adults across the human lifespan. We discovered nearly 20% of the population show strongly accelerated age in one organ and 1.7% are multi-organ agers. Accelerated organ aging confers 20-50% higher mortality risk, and organ-specific diseases relate to faster aging of those organs. We find individuals with accelerated heart aging have a 250% increased heart failure risk and accelerated brain and vascular aging predict Alzheimer's disease (AD) progression independently from and as strongly as plasma pTau-181 (ref. 5), the current best blood-based biomarker for AD. Our models link vascular calcification, extracellular matrix alterations and synaptic protein shedding to early cognitive decline. We introduce a simple and interpretable method to study organ aging using plasma proteomics data, predicting diseases and aging effects.


Assuntos
Envelhecimento , Biomarcadores , Doença , Saúde , Especificidade de Órgãos , Proteoma , Proteômica , Adulto , Humanos , Envelhecimento/sangue , Doença de Alzheimer/sangue , Biomarcadores/sangue , Encéfalo/metabolismo , Disfunção Cognitiva/sangue , Proteoma/análise , Aprendizado de Máquina , Estudos de Coortes , Progressão da Doença , Insuficiência Cardíaca/sangue , Matriz Extracelular/metabolismo , Sinapses/metabolismo , Calcificação Vascular/sangue , Coração
5.
Physiol Rev ; 101(4): 1487-1559, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33769101

RESUMO

Brain function critically depends on a close matching between metabolic demands, appropriate delivery of oxygen and nutrients, and removal of cellular waste. This matching requires continuous regulation of cerebral blood flow (CBF), which can be categorized into four broad topics: 1) autoregulation, which describes the response of the cerebrovasculature to changes in perfusion pressure; 2) vascular reactivity to vasoactive stimuli [including carbon dioxide (CO2)]; 3) neurovascular coupling (NVC), i.e., the CBF response to local changes in neural activity (often standardized cognitive stimuli in humans); and 4) endothelium-dependent responses. This review focuses primarily on autoregulation and its clinical implications. To place autoregulation in a more precise context, and to better understand integrated approaches in the cerebral circulation, we also briefly address reactivity to CO2 and NVC. In addition to our focus on effects of perfusion pressure (or blood pressure), we describe the impact of select stimuli on regulation of CBF (i.e., arterial blood gases, cerebral metabolism, neural mechanisms, and specific vascular cells), the interrelationships between these stimuli, and implications for regulation of CBF at the level of large arteries and the microcirculation. We review clinical implications of autoregulation in aging, hypertension, stroke, mild cognitive impairment, anesthesia, and dementias. Finally, we discuss autoregulation in the context of common daily physiological challenges, including changes in posture (e.g., orthostatic hypotension, syncope) and physical activity.


Assuntos
Circulação Cerebrovascular/fisiologia , Transtornos Cerebrovasculares/fisiopatologia , Homeostase/fisiologia , Animais , Humanos , Doenças do Sistema Nervoso/fisiopatologia , Acoplamento Neurovascular
6.
Immunity ; 51(2): 258-271.e5, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31350176

RESUMO

Macrophage plasticity is critical for normal tissue repair to ensure transition from the inflammatory to the proliferative phase of healing. We examined macrophages isolated from wounds of patients afflicted with diabetes and of healthy controls and found differential expression of the methyltransferase Setdb2. Myeloid-specific deletion of Setdb2 impaired the transition of macrophages from an inflammatory phenotype to a reparative one in normal wound healing. Mechanistically, Setdb2 trimethylated histone 3 at NF-κB binding sites on inflammatory cytokine gene promoters to suppress transcription. Setdb2 expression in wound macrophages was regulated by interferon (IFN) ß, and under diabetic conditions, this IFNß-Setdb2 axis was impaired, leading to a persistent inflammatory macrophage phenotype in diabetic wounds. Setdb2 regulated the expression of xanthine oxidase and thereby the uric acid (UA) pathway of purine catabolism in macrophages, and pharmacologic targeting of Setdb2 or the UA pathway improved healing. Thus, Setdb2 regulates macrophage plasticity during normal and pathologic wound repair and is a target for therapeutic manipulation.


Assuntos
Proteínas de Transporte/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Macrófagos/fisiologia , Proteínas Nucleares/metabolismo , Idoso , Animais , Proteínas de Transporte/genética , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Feminino , Histona-Lisina N-Metiltransferase/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Fenótipo , Ácido Úrico/metabolismo , Cicatrização
7.
Nature ; 602(7895): 63-67, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110756

RESUMO

Electrically charged particles can be created by the decay of strong enough electric fields, a phenomenon known as the Schwinger mechanism1. By electromagnetic duality, a sufficiently strong magnetic field would similarly produce magnetic monopoles, if they exist2. Magnetic monopoles are hypothetical fundamental particles that are predicted by several theories beyond the standard model3-7 but have never been experimentally detected. Searching for the existence of magnetic monopoles via the Schwinger mechanism has not yet been attempted, but it is advantageous, owing to the possibility of calculating its rate through semi-classical techniques without perturbation theory, as well as that the production of the magnetic monopoles should be enhanced by their finite size8,9 and strong coupling to photons2,10. Here we present a search for magnetic monopole production by the Schwinger mechanism in Pb-Pb heavy ion collisions at the Large Hadron Collider, producing the strongest known magnetic fields in the current Universe11. It was conducted by the MoEDAL experiment, whose trapping detectors were exposed to 0.235 per nanobarn, or approximately 1.8 × 109, of Pb-Pb collisions with 5.02-teraelectronvolt center-of-mass energy per collision in November 2018. A superconducting quantum interference device (SQUID) magnetometer scanned the trapping detectors of MoEDAL for the presence of magnetic charge, which would induce a persistent current in the SQUID. Magnetic monopoles with integer Dirac charges of 1, 2 and 3 and masses up to 75 gigaelectronvolts per speed of light squared were excluded by the analysis at the 95% confidence level. This provides a lower mass limit for finite-size magnetic monopoles from a collider search and greatly extends previous mass bounds.

8.
Nature ; 602(7895): 135-141, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34987223

RESUMO

The discovery of antibiotics more than 80 years ago has led to considerable improvements in human and animal health. Although antibiotic resistance in environmental bacteria is ancient, resistance in human pathogens is thought to be a modern phenomenon that is driven by the clinical use of antibiotics1. Here we show that particular lineages of methicillin-resistant Staphylococcus aureus-a notorious human pathogen-appeared in European hedgehogs in the pre-antibiotic era. Subsequently, these lineages spread within the local hedgehog populations and between hedgehogs and secondary hosts, including livestock and humans. We also demonstrate that the hedgehog dermatophyte Trichophyton erinacei produces two ß-lactam antibiotics that provide a natural selective environment in which methicillin-resistant S. aureus isolates have an advantage over susceptible isolates. Together, these results suggest that methicillin resistance emerged in the pre-antibiotic era as a co-evolutionary adaptation of S. aureus to the colonization of dermatophyte-infected hedgehogs. The evolution of clinically relevant antibiotic-resistance genes in wild animals and the connectivity of natural, agricultural and human ecosystems demonstrate that the use of a One Health approach is critical for our understanding and management of antibiotic resistance, which is one of the biggest threats to global health, food security and development.


Assuntos
Antibacterianos/história , Arthrodermataceae/metabolismo , Ouriços/metabolismo , Ouriços/microbiologia , Resistência a Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/genética , Seleção Genética/genética , Animais , Antibacterianos/metabolismo , Arthrodermataceae/genética , Dinamarca , Europa (Continente) , Evolução Molecular , Mapeamento Geográfico , História do Século XX , Humanos , Staphylococcus aureus Resistente à Meticilina/metabolismo , Nova Zelândia , Saúde Única , Penicilinas/biossíntese , Filogenia , beta-Lactamas/metabolismo
9.
N Engl J Med ; 390(17): 1560-1571, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38587254

RESUMO

BACKGROUND: Cardiovascular events frequently recur after acute myocardial infarction, and low cholesterol efflux - a process mediated by apolipoprotein A1, which is the main protein in high-density lipoprotein - has been associated with an increased risk of cardiovascular events. CSL112 is human apolipoprotein A1 derived from plasma that increases cholesterol efflux capacity. Whether infusions of CSL112 can reduce the risk of recurrent cardiovascular events after acute myocardial infarction is unclear. METHODS: We conducted an international, double-blind, placebo-controlled trial involving patients with acute myocardial infarction, multivessel coronary artery disease, and additional cardiovascular risk factors. Patients were randomly assigned to receive either four weekly infusions of 6 g of CSL112 or matching placebo, with the first infusion administered within 5 days after the first medical contact for the acute myocardial infarction. The primary end point was a composite of myocardial infarction, stroke, or death from cardiovascular causes from randomization through 90 days of follow-up. RESULTS: A total of 18,219 patients were included in the trial (9112 in the CSL112 group and 9107 in the placebo group). There was no significant difference between the groups in the risk of a primary end-point event at 90 days of follow-up (439 patients [4.8%] in the CSL112 group vs. 472 patients [5.2%] in the placebo group; hazard ratio, 0.93; 95% confidence interval [CI], 0.81 to 1.05; P = 0.24), at 180 days of follow-up (622 patients [6.9%] vs. 683 patients [7.6%]; hazard ratio, 0.91; 95% CI, 0.81 to 1.01), or at 365 days of follow-up (885 patients [9.8%] vs. 944 patients [10.5%]; hazard ratio, 0.93; 95% CI, 0.85 to 1.02). The percentage of patients with adverse events was similar in the two groups; a higher number of hypersensitivity events was reported in the CSL112 group. CONCLUSIONS: Among patients with acute myocardial infarction, multivessel coronary artery disease, and additional cardiovascular risk factors, four weekly infusions of CSL112 did not result in a lower risk of myocardial infarction, stroke, or death from cardiovascular causes than placebo through 90 days. (Funded by CSL Behring; AEGIS-II ClinicalTrials.gov number, NCT03473223.).


Assuntos
Apolipoproteína A-I , Lipoproteínas HDL , Infarto do Miocárdio , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Apolipoproteína A-I/administração & dosagem , Apolipoproteína A-I/sangue , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/prevenção & controle , Doença da Artéria Coronariana/tratamento farmacológico , Doença da Artéria Coronariana/complicações , Método Duplo-Cego , Infusões Intravenosas , Estimativa de Kaplan-Meier , Lipoproteínas HDL/sangue , Lipoproteínas HDL/metabolismo , Infarto do Miocárdio/complicações , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/mortalidade , Recidiva , Prevenção Secundária , Acidente Vascular Cerebral/prevenção & controle , Fatores de Risco
10.
N Engl J Med ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38828984

RESUMO

BACKGROUND: Phase 1-2 trials involving patients with resectable, macroscopic stage III melanoma have shown that neoadjuvant immunotherapy is more efficacious than adjuvant immunotherapy. METHODS: In this phase 3 trial, we randomly assigned patients with resectable, macroscopic stage III melanoma, in a 1:1 ratio, to receive two cycles of neoadjuvant ipilimumab plus nivolumab and then undergo surgery or to undergo surgery and then receive 12 cycles of adjuvant nivolumab. Only the patients in the neoadjuvant group who had a partial response or nonresponse received subsequent adjuvant treatment. The primary end point was event-free survival. RESULTS: A total of 423 patients underwent randomization. At a median follow-up of 9.9 months, the estimated 12-month event-free survival was 83.7% (99.9% confidence interval [CI], 73.8 to 94.8) in the neoadjuvant group and 57.2% (99.9% CI, 45.1 to 72.7) in the adjuvant group. The difference in restricted mean survival time was 8.00 months (99.9% CI, 4.94 to 11.05; P<0.001; hazard ratio for progression, recurrence, or death, 0.32; 99.9% CI, 0.15 to 0.66). In the neoadjuvant group, 59.0% of the patients had a major pathological response, 8.0% had a partial response, 26.4% had a nonresponse (>50% residual viable tumor), and 2.4% had progression; in 4.2%, surgery had not yet been performed or was omitted. The estimated 12-month recurrence-free survival was 95.1% among patients in the neoadjuvant group who had a major pathological response, 76.1% among those who had a partial response, and 57.0% among those who had a nonresponse. Adverse events of grade 3 or higher that were related to systemic treatment occurred in 29.7% of the patients in the neoadjuvant group and in 14.7% in the adjuvant group. CONCLUSIONS: Among patients with resectable, macroscopic stage III melanoma, neoadjuvant ipilimumab plus nivolumab followed by surgery and response-driven adjuvant therapy resulted in longer event-free survival than surgery followed by adjuvant nivolumab. (Funded by Bristol Myers Squibb and others; NADINA ClinicalTrials.gov number, NCT04949113.).

11.
Nature ; 590(7844): 122-128, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33473210

RESUMO

Ageing is characterized by the development of persistent pro-inflammatory responses that contribute to atherosclerosis, metabolic syndrome, cancer and frailty1-3. The ageing brain is also vulnerable to inflammation, as demonstrated by the high prevalence of age-associated cognitive decline and Alzheimer's disease4-6. Systemically, circulating pro-inflammatory factors can promote cognitive decline7,8, and in the brain, microglia lose the ability to clear misfolded proteins that are associated with neurodegeneration9,10. However, the underlying mechanisms that initiate and sustain maladaptive inflammation with ageing are not well defined. Here we show that in ageing mice myeloid cell bioenergetics are suppressed in response to increased signalling by the lipid messenger prostaglandin E2 (PGE2), a major modulator of inflammation11. In ageing macrophages and microglia, PGE2 signalling through its EP2 receptor promotes the sequestration of glucose into glycogen, reducing glucose flux and mitochondrial respiration. This energy-deficient state, which drives maladaptive pro-inflammatory responses, is further augmented by a dependence of aged myeloid cells on glucose as a principal fuel source. In aged mice, inhibition of myeloid EP2 signalling rejuvenates cellular bioenergetics, systemic and brain inflammatory states, hippocampal synaptic plasticity and spatial memory. Moreover, blockade of peripheral myeloid EP2 signalling is sufficient to restore cognition in aged mice. Our study suggests that cognitive ageing is not a static or irrevocable condition but can be reversed by reprogramming myeloid glucose metabolism to restore youthful immune functions.


Assuntos
Envelhecimento/metabolismo , Disfunção Cognitiva/prevenção & controle , Células Mieloides/metabolismo , Adulto , Idoso , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Animais , Respiração Celular , Células Cultivadas , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/genética , Dinoprostona/metabolismo , Metabolismo Energético , Glucose/metabolismo , Glicogênio/biossíntese , Glicogênio/metabolismo , Humanos , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Transtornos da Memória/tratamento farmacológico , Camundongos , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/metabolismo , Mitocôndrias/metabolismo , Células Mieloides/imunologia , Receptores de Prostaglandina E Subtipo EP2/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP2/deficiência , Receptores de Prostaglandina E Subtipo EP2/genética , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos
12.
Nature ; 593(7858): 282-288, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33828302

RESUMO

Cancer cells characteristically consume glucose through Warburg metabolism1, a process that forms the basis of tumour imaging by positron emission tomography (PET). Tumour-infiltrating immune cells also rely on glucose, and impaired immune cell metabolism in the tumour microenvironment (TME) contributes to immune evasion by tumour cells2-4. However, whether the metabolism of immune cells is dysregulated in the TME by cell-intrinsic programs or by competition with cancer cells for limited nutrients remains unclear. Here we used PET tracers to measure the access to and uptake of glucose and glutamine by specific cell subsets in the TME. Notably, myeloid cells had the greatest capacity to take up intratumoral glucose, followed by T cells and cancer cells, across a range of cancer models. By contrast, cancer cells showed the highest uptake of glutamine. This distinct nutrient partitioning was programmed in a cell-intrinsic manner through mTORC1 signalling and the expression of genes related to the metabolism of glucose and glutamine. Inhibiting glutamine uptake enhanced glucose uptake across tumour-resident cell types, showing that glutamine metabolism suppresses glucose uptake without glucose being a limiting factor in the TME. Thus, cell-intrinsic programs drive the preferential acquisition of glucose and glutamine by immune and cancer cells, respectively. Cell-selective partitioning of these nutrients could be exploited to develop therapies and imaging strategies to enhance or monitor the metabolic programs and activities of specific cell populations in the TME.


Assuntos
Neoplasias/metabolismo , Neoplasias/patologia , Nutrientes/metabolismo , Microambiente Tumoral , Animais , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Feminino , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Metabolismo dos Lipídeos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias/imunologia , Microambiente Tumoral/imunologia
13.
N Engl J Med ; 389(7): 602-611, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37466280

RESUMO

BACKGROUND: Findings from observational studies suggest that dietary patterns may offer protective benefits against cognitive decline, but data from clinical trials are limited. The Mediterranean-DASH Intervention for Neurodegenerative Delay, known as the MIND diet, is a hybrid of the Mediterranean diet and the DASH (Dietary Approaches to Stop Hypertension) diet, with modifications to include foods that have been putatively associated with a decreased risk of dementia. METHODS: We performed a two-site, randomized, controlled trial involving older adults without cognitive impairment but with a family history of dementia, a body-mass index (the weight in kilograms divided by the square of the height in meters) greater than 25, and a suboptimal diet, as determined by means of a 14-item questionnaire, to test the cognitive effects of the MIND diet with mild caloric restriction as compared with a control diet with mild caloric restriction. We assigned the participants in a 1:1 ratio to follow the intervention or the control diet for 3 years. All the participants received counseling regarding adherence to their assigned diet plus support to promote weight loss. The primary end point was the change from baseline in a global cognition score and four cognitive domain scores, all of which were derived from a 12-test battery. The raw scores from each test were converted to z scores, which were averaged across all tests to create the global cognition score and across component tests to create the four domain scores; higher scores indicate better cognitive performance. The secondary outcome was the change from baseline in magnetic resonance imaging (MRI)-derived measures of brain characteristics in a nonrandom sample of participants. RESULTS: A total of 1929 persons underwent screening, and 604 were enrolled; 301 were assigned to the MIND-diet group and 303 to the control-diet group. The trial was completed by 93.4% of the participants. From baseline to year 3, improvements in global cognition scores were observed in both groups, with increases of 0.205 standardized units in the MIND-diet group and 0.170 standardized units in the control-diet group (mean difference, 0.035 standardized units; 95% confidence interval, -0.022 to 0.092; P = 0.23). Changes in white-matter hyperintensities, hippocampal volumes, and total gray- and white-matter volumes on MRI were similar in the two groups. CONCLUSIONS: Among cognitively unimpaired participants with a family history of dementia, changes in cognition and brain MRI outcomes from baseline to year 3 did not differ significantly between those who followed the MIND diet and those who followed the control diet with mild caloric restriction. (Funded by the National Institute on Aging; ClinicalTrials.gov number, NCT02817074.).


Assuntos
Disfunção Cognitiva , Demência , Dieta Mediterrânea , Idoso , Idoso de 80 Anos ou mais , Humanos , Encéfalo/diagnóstico por imagem , Cognição , Disfunção Cognitiva/prevenção & controle , Demência/prevenção & controle , Dieta Hipossódica , Restrição Calórica
14.
N Engl J Med ; 389(25): 2341-2354, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37888913

RESUMO

BACKGROUND: The efficacy of simvastatin in critically ill patients with coronavirus disease 2019 (Covid-19) is unclear. METHODS: In an ongoing international, multifactorial, adaptive platform, randomized, controlled trial, we evaluated simvastatin (80 mg daily) as compared with no statin (control) in critically ill patients with Covid-19 who were not receiving statins at baseline. The primary outcome was respiratory and cardiovascular organ support-free days, assessed on an ordinal scale combining in-hospital death (assigned a value of -1) and days free of organ support through day 21 in survivors; the analyis used a Bayesian hierarchical ordinal model. The adaptive design included prespecified statistical stopping criteria for superiority (>99% posterior probability that the odds ratio was >1) and futility (>95% posterior probability that the odds ratio was <1.2). RESULTS: Enrollment began on October 28, 2020. On January 8, 2023, enrollment was closed on the basis of a low anticipated likelihood that prespecified stopping criteria would be met as Covid-19 cases decreased. The final analysis included 2684 critically ill patients. The median number of organ support-free days was 11 (interquartile range, -1 to 17) in the simvastatin group and 7 (interquartile range, -1 to 16) in the control group; the posterior median adjusted odds ratio was 1.15 (95% credible interval, 0.98 to 1.34) for simvastatin as compared with control, yielding a 95.9% posterior probability of superiority. At 90 days, the hazard ratio for survival was 1.12 (95% credible interval, 0.95 to 1.32), yielding a 91.9% posterior probability of superiority of simvastatin. The results of secondary analyses were consistent with those of the primary analysis. Serious adverse events, such as elevated levels of liver enzymes and creatine kinase, were reported more frequently with simvastatin than with control. CONCLUSIONS: Although recruitment was stopped because cases had decreased, among critically ill patients with Covid-19, simvastatin did not meet the prespecified criteria for superiority to control. (REMAP-CAP ClinicalTrials.gov number, NCT02735707.).


Assuntos
COVID-19 , Estado Terminal , Inibidores de Hidroximetilglutaril-CoA Redutases , Sinvastatina , Humanos , Teorema de Bayes , COVID-19/mortalidade , COVID-19/terapia , Tratamento Farmacológico da COVID-19 , Estado Terminal/mortalidade , Estado Terminal/terapia , Mortalidade Hospitalar , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Sinvastatina/uso terapêutico , Resultado do Tratamento
15.
PLoS Pathog ; 20(1): e1011880, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38271294

RESUMO

BACKGROUND: West Nile virus (WNV) outbreaks in birds, humans, and livestock have occurred in multiple areas in Europe and have had a significant impact on animal and human health. The patterns of emergence and spread of WNV in Europe are very different from those in the US and understanding these are important for guiding preparedness activities. METHODS: We mapped the evolution and spread history of WNV in Europe by incorporating viral genome sequences and epidemiological data into phylodynamic models. Spatially explicit phylogeographic models were developed to explore the possible contribution of different drivers to viral dispersal direction and velocity. A "skygrid-GLM" approach was used to identify how changes in environments would predict viral genetic diversity variations over time. FINDINGS: Among the six lineages found in Europe, WNV-2a (a sub-lineage of WNV-2) has been predominant (accounting for 73% of all sequences obtained in Europe that have been shared in the public domain) and has spread to at least 14 countries. In the past two decades, WNV-2a has evolved into two major co-circulating clusters, both originating from Central Europe, but with distinct dynamic history and transmission patterns. WNV-2a spreads at a high dispersal velocity (88km/yr-215 km/yr) which is correlated to bird movements. Notably, amongst multiple drivers that could affect the spread of WNV, factors related to land use were found to strongly influence the spread of WNV. Specifically, the intensity of agricultural activities (defined by factors related to crops and livestock production, such as coverage of cropland, pasture, cultivated and managed vegetation, livestock density) were positively associated with both spread direction and velocity. In addition, WNV spread direction was associated with high coverage of wetlands and migratory bird flyways. CONCLUSION: Our results suggest that-in addition to ecological conditions favouring bird- and mosquito- presence-agricultural land use may be a significant driver of WNV emergence and spread. Our study also identified significant gaps in data and the need to strengthen virological surveillance in countries of Central Europe from where WNV outbreaks are likely seeded. Enhanced monitoring for early detection of further dispersal could be targeted to areas with high agricultural activities and habitats of migratory birds.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Vírus do Nilo Ocidental/genética , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária , Filogeografia , Europa (Continente)/epidemiologia , Surtos de Doenças
16.
Immunity ; 47(5): 928-942.e7, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29166590

RESUMO

Pancreatic-islet inflammation contributes to the failure of ß cell insulin secretion during obesity and type 2 diabetes. However, little is known about the nature and function of resident immune cells in this context or in homeostasis. Here we show that interleukin (IL)-33 was produced by islet mesenchymal cells and enhanced by a diabetes milieu (glucose, IL-1ß, and palmitate). IL-33 promoted ß cell function through islet-resident group 2 innate lymphoid cells (ILC2s) that elicited retinoic acid (RA)-producing capacities in macrophages and dendritic cells via the secretion of IL-13 and colony-stimulating factor 2. In turn, local RA signaled to the ß cells to increase insulin secretion. This IL-33-ILC2 axis was activated after acute ß cell stress but was defective during chronic obesity. Accordingly, IL-33 injections rescued islet function in obese mice. Our findings provide evidence that an immunometabolic crosstalk between islet-derived IL-33, ILC2s, and myeloid cells fosters insulin secretion.


Assuntos
Insulina/metabolismo , Interleucina-33/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Células Mieloides/metabolismo , Tretinoína/metabolismo , Animais , Humanos , Inflamação/imunologia , Secreção de Insulina , Interleucina-33/biossíntese , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/patologia , Linfócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Vitamina A/fisiologia
17.
PLoS Biol ; 21(9): e3002278, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37708139

RESUMO

Sexual reproduction involving meiosis is essential in most eukaryotes. This produces offspring with novel genotypes, both by segregation of parental chromosomes as well as crossovers between homologous chromosomes. A sexual cycle for the opportunistic human pathogenic fungus Aspergillus fumigatus is known, but the genetic consequences of meiosis have remained unknown. Among other Aspergilli, it is known that A. flavus has a moderately high recombination rate with an average of 4.2 crossovers per chromosome pair, whereas A. nidulans has in contrast a higher rate with 9.3 crossovers per chromosome pair. Here, we show in a cross between A. fumigatus strains that they produce an average of 29.9 crossovers per chromosome pair and large variation in total map length across additional strain crosses. This rate of crossovers per chromosome is more than twice that seen for any known organism, which we discuss in relation to other genetic model systems. We validate this high rate of crossovers through mapping of resistance to the laboratory antifungal acriflavine by using standing variation in an undescribed ABC efflux transporter. We then demonstrate that this rate of crossovers is sufficient to produce one of the common multidrug resistant haplotypes found in the cyp51A gene (TR34/L98H) in crosses among parents harboring either of 2 nearby genetic variants, possibly explaining the early spread of such haplotypes. Our results suggest that genomic studies in this species should reassess common assumptions about linkage between genetic regions. The finding of an unparalleled crossover rate in A. fumigatus provides opportunities to understand why these rates are not generally higher in other eukaryotes.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Aspergillus fumigatus , Humanos , Aspergillus fumigatus/genética , Antifúngicos , Transporte Biológico , Eucariotos , Meiose/genética
18.
Circ Res ; 134(6): 810-832, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484034

RESUMO

Hypertension is extremely common, affecting approximately 1 in every 2 adults globally. Chronic hypertension is the leading modifiable risk factor for cardiovascular disease and premature mortality worldwide. Despite considerable efforts to define mechanisms that underlie hypertension, a potentially major component of the disease, the role of circadian biology has been relatively overlooked in both preclinical models and humans. Although the presence of daily and circadian patterns has been observed from the level of the genome to the whole organism, the functional and structural impact of biological rhythms, including mechanisms such as circadian misalignment, remains relatively poorly defined. Here, we review the impact of daily rhythms and circadian systems in regulating blood pressure and the onset, progression, and consequences of hypertension. There is an emphasis on the impact of circadian biology in relation to vascular disease and end-organ effects that, individually or in combination, contribute to complex phenotypes such as cognitive decline and the loss of cardiac and brain health. Despite effective treatment options for some individuals, control of blood pressure remains inadequate in a substantial portion of the hypertensive population. Greater insight into circadian biology may form a foundation for novel and more widely effective molecular therapies or interventions to help in the prevention, treatment, and management of hypertension and its related pathophysiology.


Assuntos
Doenças Cardiovasculares , Hipertensão , Adulto , Humanos , Pressão Sanguínea/fisiologia , Ritmo Circadiano , Coração
19.
Proc Natl Acad Sci U S A ; 120(39): e2303752120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722039

RESUMO

Isochromosomes are mirror-imaged chromosomes with simultaneous duplication and deletion of genetic material which may contain two centromeres to create isodicentric chromosomes. Although isochromosomes commonly occur in cancer and developmental disorders and promote genome instability, mechanisms that prevent isochromosomes are not well understood. We show here that the tumor suppressor and methyltransferase SETD2 is essential to prevent these errors. Using cellular and cytogenetic approaches, we demonstrate that loss of SETD2 or its epigenetic mark, histone H3 lysine 36 trimethylation (H3K36me3), results in the formation of isochromosomes as well as isodicentric and acentric chromosomes. These defects arise during DNA replication and are likely due to faulty homologous recombination by RAD52. These data provide a mechanism for isochromosome generation and demonstrate that SETD2 and H3K36me3 are essential to prevent the formation of this common mutable chromatin structure known to initiate a cascade of genomic instability in cancer.


Assuntos
Isocromossomos , Humanos , Centrômero , Aberrações Cromossômicas , Citogenética , Replicação do DNA , Instabilidade Genômica
20.
Genome Res ; 32(4): 656-670, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35332097

RESUMO

Genome-wide association studies (GWAS) have been highly informative in discovering disease-associated loci but are not designed to capture all structural variations in the human genome. Using long-read sequencing data, we discovered widespread structural variation within SINE-VNTR-Alu (SVA) elements, a class of great ape-specific transposable elements with gene-regulatory roles, which represents a major source of structural variability in the human population. We highlight the presence of structurally variable SVAs (SV-SVAs) in neurological disease-associated loci, and we further associate SV-SVAs to disease-associated SNPs and differential gene expression using luciferase assays and expression quantitative trait loci data. Finally, we genetically deleted SV-SVAs in the BIN1 and CD2AP Alzheimer's disease-associated risk loci and in the BCKDK Parkinson's disease-associated risk locus and assessed multiple aspects of their gene-regulatory influence in a human neuronal context. Together, this study reveals a novel layer of genetic variation in transposable elements that may contribute to identification of the structural variants that are the actual drivers of disease associations of GWAS loci.


Assuntos
Elementos de DNA Transponíveis , Estudo de Associação Genômica Ampla , Elementos Alu , Elementos de DNA Transponíveis/genética , Predisposição Genética para Doença , Variação Genética , Genoma Humano , Humanos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA