RESUMO
BACKGROUND: Pneumoconiosis among coal miners in the USA has been resurgent over the past two decades, despite modern dust controls and regulatory standards. Previously published studies have suggested that respirable crystalline silica (RCS) is a contributor to this disease resurgence. However, evidence has been primarily indirect, in the form of radiographic features. METHODS: We obtained lung tissue specimens and data from the National Coal Workers' Autopsy Study. We evaluated specimens for the presence of progressive massive fibrosis (PMF) and used histopathological classifications to type these specimens into coal-type, mixed-type and silica-type PMF. Rates of each were compared by birth cohort. Logistic regression was used to assess demographic and mining characteristics associated with silica-type PMF. RESULTS: Of 322 cases found to have PMF, study pathologists characterised 138 (43%) as coal-type, 129 (40%) as mixed-type and 55 (17%) as silica-type PMF. Among earlier birth cohorts, coal-type and mixed-type PMF were more common than silica-type PMF, but their rates declined in later birth cohorts. In contrast, the rate of silica-type PMF did not decline in cases from more recent birth cohorts. More recent year of birth was significantly associated with silica-type PMF. CONCLUSIONS: Our findings demonstrate a shift in PMF types among US coal miners, from a predominance of coal- and mixed-type PMF to a more commonly encountered silica-type PMF. These results are further evidence of the prominent role of RCS in the pathogenesis of pneumoconiosis among contemporary US coal miners.
Assuntos
Minas de Carvão , Doenças Profissionais , Pneumoconiose , Humanos , Estados Unidos/epidemiologia , Doenças Profissionais/epidemiologia , Doenças Profissionais/etiologia , Doenças Profissionais/patologia , Dióxido de Silício/efeitos adversos , Poeira , Carvão Mineral/efeitos adversos , FibroseRESUMO
Rationale: Workers' exposure to metalworking fluid (MWF) has been associated with respiratory disease.Objectives: As part of a public health investigation of a manufacturing facility, we performed a cross-sectional study using paired environmental and human sampling to evaluate the cross-pollination of microbes between the environment and the host and possible effects on lung pathology present among workers.Methods: Workplace environmental microbiota were evaluated in air and MWF samples. Human microbiota were evaluated in lung tissue samples from workers with respiratory symptoms found to have lymphocytic bronchiolitis and alveolar ductitis with B-cell follicles and emphysema, in lung tissue samples from control subjects, and in skin, nasal, and oral samples from 302 workers from different areas of the facility. In vitro effects of MWF exposure on murine B cells were assessed.Measurements and Main Results: An increased similarity of microbial composition was found between MWF samples and lung tissue samples of case workers compared with control subjects. Among workers in different locations within the facility, those that worked in the machine shop area had skin, nasal, and oral microbiota more closely related to the microbiota present in the MWF samples. Lung samples from four index cases and skin and nasal samples from workers in the machine shop area were enriched with Pseudomonas, the dominant taxa in MWF. Exposure to used MWF stimulated murine B-cell proliferation in vitro, a hallmark cell subtype found in the pathology of index cases.Conclusions: Evaluation of a manufacturing facility with a cluster of workers with respiratory disease supports cross-pollination of microbes from MWF to humans and suggests the potential for exposure to these microbes to be a health hazard.
Assuntos
Aerossóis/efeitos adversos , Poluentes Ocupacionais do Ar/efeitos adversos , Instalações Industriais e de Manufatura , Microbiota , Pseudomonas pseudoalcaligenes , Transtornos Respiratórios/fisiopatologia , Adulto , Microbiologia do Ar , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Respiratórios/etiologia , Estados UnidosRESUMO
BACKGROUND: A cluster of severe lung disease occurred at a manufacturing facility making industrial machines. We aimed to describe disease features and workplace exposures. METHODS: Clinical, functional, radiologic, and histopathologic features were characterized. Airborne concentrations of thoracic aerosol, metalworking fluid, endotoxin, metals, and volatile organic compounds were measured. Facility airflow was assessed using tracer gas. Process fluids were examined using culture, polymerase chain reaction, and 16S ribosomal RNA sequencing. RESULTS: Five previously healthy male never-smokers, ages 27 to 50, developed chest symptoms from 1995 to 2012 while working in the facility's production areas. Patients had an insidious onset of cough, wheeze, and exertional dyspnea; airflow obstruction (mean FEV1 = 44% predicted) and reduced diffusing capacity (mean = 53% predicted); and radiologic centrilobular emphysema. Lung tissue demonstrated a unique pattern of bronchiolitis and alveolar ductitis with B-cell follicles lacking germinal centers, and significant emphysema for never-smokers. All had chronic dyspnea, three had a progressive functional decline, and one underwent lung transplantation. Patients reported no unusual nonoccupational exposures. No cases were identified among nonproduction workers or in the community. Endotoxin concentrations were elevated in two air samples; otherwise, exposures were below occupational limits. Air flowed from areas where machining occurred to other production areas. Metalworking fluid primarily grew Pseudomonas pseudoalcaligenes and lacked mycobacterial DNA, but 16S analysis revealed more complex bacterial communities. CONCLUSION: This cluster indicates a previously unrecognized occupational lung disease of yet uncertain etiology that should be considered in manufacturing workers (particularly never-smokers) with airflow obstruction and centrilobular emphysema. Investigation of additional cases in other settings could clarify the cause and guide prevention.
Assuntos
Bronquiolite/etiologia , Pulmão/patologia , Indústria Manufatureira , Doenças Profissionais/etiologia , Exposição Ocupacional/efeitos adversos , Enfisema Pulmonar/etiologia , Adulto , Poluentes Ocupacionais do Ar/efeitos adversos , Poluentes Ocupacionais do Ar/análise , Endotoxinas/análise , Humanos , Masculino , Instalações Industriais e de Manufatura , Pessoa de Meia-Idade , Exposição Ocupacional/análise , Alvéolos Pulmonares/patologia , Adulto JovemRESUMO
CONTEXT.: Current approaches for characterizing retained lung dust using pathologists' qualitative assessment or scanning electron microscopy with energy-dispersive spectroscopy (SEM/EDS) have limitations. OBJECTIVE.: To explore polarized light microscopy coupled with image-processing software, termed quantitative microscopy-particulate matter (QM-PM), as a tool to characterize in situ dust in lung tissue of US coal miners with progressive massive fibrosis. DESIGN.: We developed a standardized protocol using microscopy images to characterize the in situ burden of birefringent crystalline silica/silicate particles (mineral density) and carbonaceous particles (pigment fraction). Mineral density and pigment fraction were compared with pathologists' qualitative assessments and SEM/EDS analyses. Particle features were compared between historical (born before 1930) and contemporary coal miners, who likely had different exposures following changes in mining technology. RESULTS.: Lung tissue samples from 85 coal miners (62 historical and 23 contemporary) and 10 healthy controls were analyzed using QM-PM. Mineral density and pigment fraction measurements with QM-PM were comparable to consensus pathologists' scoring and SEM/EDS analyses. Contemporary miners had greater mineral density than historical miners (186 456 versus 63 727/mm3; P = .02) and controls (4542/mm3), consistent with higher amounts of silica/silicate dust. Contemporary and historical miners had similar particle sizes (median area, 1.00 versus 1.14 µm2; P = .46) and birefringence under polarized light (median grayscale brightness: 80.9 versus 87.6; P = .29). CONCLUSIONS.: QM-PM reliably characterizes in situ silica/silicate and carbonaceous particles in a reproducible, automated, accessible, and time/cost/labor-efficient manner, and shows promise as a tool for understanding occupational lung pathology and targeting exposure controls.
Assuntos
Minas de Carvão , Exposição Ocupacional , Pneumoconiose , Humanos , Pneumoconiose/diagnóstico por imagem , Pneumoconiose/patologia , Pulmão/diagnóstico por imagem , Pulmão/patologia , Poeira , Dióxido de Silício , Silicatos , Microscopia Eletrônica de Varredura , Carvão Mineral , Exposição Ocupacional/efeitos adversosRESUMO
CONTEXT.: The pathology of coal workers' pneumoconiosis (CWP) and its most severe form-progressive massive fibrosis (PMF)-in US coal miners has changed in recent years. Severe disease is occurring in younger miners and has been linked to an increase in silica dust exposure. OBJECTIVE.: To update the description of the pathologic features of CWP in contemporary miners compared to historical miners. DESIGN.: This study is a retrospective expert classification of lung tissue from 85 historical and contemporary coal miners with PMF. Significant pathologic features were scored by using a standardized instrument with consensus achieved for major findings, including newly defined categories of PMF as coal-type, mixed-type, and silica-type. RESULTS.: Pathologic features associated with silica dust exposure, including silica-type PMF, mineral dust alveolar proteinosis (MDAP), and immature (early stage) silicotic nodules were increased in contemporary miners. Detailed descriptions of the pathology of contemporary CWP with illustrative figures are provided. CONCLUSIONS.: Silica-related pathologies are more common in contemporary miners. Severe forms of CWP can be detected by subtyping PMF lesions (if present) or by identification of mature and immature silicotic nodules, coal mine dust-related alveolar proteinosis, and severe inflammation in coal miners' lungs. Silica-type PMF cases showed significantly higher levels of MDAP than either mixed- or coal-type PMF (P < .001). High profusion of birefringent silica/silicate particles was observed more frequently in cases with immature (early stage) silicotic nodules (P = .04). Severe inflammation was also significantly increased in contemporary miners (P = .03). Our findings underscore the urgent need to revise current exposure limits and monitoring of respirable crystalline silica in US coal mines.
RESUMO
Rationale: The reasons for resurgent coal workers' pneumoconiosis and its most severe forms, rapidly progressive pneumoconiosis and progressive massive fibrosis (PMF), in the United States are not yet fully understood. Objectives: To compare the pathologic and mineralogic features of contemporary coal miners with severe pneumoconiosis with those of their historical counterparts. Methods: Lung pathology specimens from 85 coal miners with PMF were included for evaluation and analysis. We compared the proportion of cases with pathologic and mineralogic findings in miners born between 1910 and 1930 (historical) with those in miners born in or after 1930 (contemporary). Results: We found a significantly higher proportion of silica-type PMF (57% vs. 18%; P < 0.001) among contemporary miners compared with their historical counterparts. Mineral dust alveolar proteinosis was also more common in contemporary miners compared with their historical counterparts (70% vs. 37%; P < 0.01). In situ mineralogic analysis showed that the percentage (26.1% vs. 17.8%; P < 0.01) and concentration (47.3 × 108 vs. 25.8 × 108 particles/cm3; P = 0.036) of silica particles were significantly greater in specimens from contemporary miners compared with their historical counterparts. The concentration of silica particles was significantly greater when silica-type PMF, mineral dust alveolar proteinosis, silicotic nodules, or immature silicotic nodules were present (P < 0.05). Conclusions: Exposure to respirable crystalline silica appears causal in the unexpected surge of severe disease in contemporary miners. Our findings underscore the importance of controlling workplace silica exposure to prevent the disabling and untreatable adverse health effects afflicting U.S. coal miners.
Assuntos
Antracose , Minas de Carvão , Exposição Ocupacional , Pneumoconiose , Proteinose Alveolar Pulmonar , Antracose/epidemiologia , Carvão Mineral , Poeira , Humanos , Exposição Ocupacional/efeitos adversos , Pneumoconiose/epidemiologia , Prevalência , Dióxido de Silício/efeitos adversos , Estados Unidos/epidemiologiaRESUMO
The Canadian Medical Association Journal (CMAJ) is a high-impact multidisciplinary medical journal. We have observed instances in which a pathology diagnosis, documented with gross or microscopic images, forms an integral part of a CMAJ article, but a pathologist is neither an author nor acknowledged as a contributor. To examine the hypothesis that pathologist contributions are underrecognized and/or underdocumented, we reviewed all CMAJ articles over a 6-year period (September 2003-2009), and correlated the use of pathology images with pathologist authorship or contribution. For each article containing pathology images, department affiliations of authors were determined, and acknowledgments were assessed. Although only 1.7% of articles contained pathology images, 47% (26/55) of these articles did not include a pathologist as either an author or a contributor. We conclude that important intellectual contributions of pathologists are underrecognized and suggest that the scientific credibility of pathology data is in doubt when pathologists do not take on full responsibility of authorship or are not acknowledged as contributors.