Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microcirculation ; 30(4): e12805, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36918739

RESUMO

OBJECTIVE: To determine if insulin-mediated hyperemia is partially dependent on local muscle oxygen concentration. METHODS: Sprague-Dawley rats were anesthetized, and the extensor digitorum longus (EDL) was reflected onto an inverted microscope. Intravital video microscopy sequences were recorded during baseline and hyperinsulinemic euglycemia. The muscle was reflected over a glass stage insert (Experiment 1a and 1b), or over a gas exchange chamber (Experiment 2), and microvascular capillary blood flow was recorded during sequential changes (7%-12%-2%-7%) of oxygen (O2 ) concentration. Blood flow was measured by the red blood cell supply rate (SR) in number of cells per second. All animal protocols were approved by Memorial University's Institutional Animal Care Committee. RESULTS: In Experiment 1a, SR increased from 8.0 to 14.0 cells/s at baseline to euglycemia (p = .01), while no significant SR variation was detected after performing a sham hyperinsulinemic euglycemic clamp (Experiment 1b). In Experiment 2, SR decreased at 12% O2 and increased at 2% O2 , compared to 7% O2 , under both experimental conditions. Magnitude of SR responses to oxygen oscillations during euglycemia were not different to those at baseline at each O2 concentration (p > .9). CONCLUSIONS: Our results suggest that increased blood flow observed in response to insulin is eliminated if tissue oxygen microenvironment is fixed at a given oxygen concentration.


Assuntos
Insulinas , Músculo Esquelético , Ratos , Animais , Microcirculação/fisiologia , Ratos Sprague-Dawley , Músculo Esquelético/irrigação sanguínea , Oxigênio
2.
Microcirculation ; 29(6-7): e12751, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35146836

RESUMO

OBJECTIVE: The aim of this study was to develop a tool to visualize and quantify hemodynamic information, such as hemoglobin concentration and hematocrit, within microvascular networks recorded in vivo using intravital video microscopy. Additionally, we aimed to facilitate the 3-D reconstruction of the microvascular networks. METHODS: Digital images taken from an intravital video microscopy preparation of the extensor digitorum longus muscle in rats for 25 capillary segments were used. The developed algorithm was used to delineate capillaries of interest, calculate the optical density for each pixel in the image, and reconstruct the 3-D capillary geometry using the calculated light path-lengths. Subsequently, the mean corpuscular hemoglobin concentration (MCHC), hemoglobin concentration, and hematocrit for these capillaries were calculated. We evaluated the hematocrit values determined by our methodology by comparing them to those obtained using a previously published method. RESULTS: The hematocrit values from the proposed optical method were strongly correlated with those calculated using published methods r2 (25) = .92, p < .001, and demonstrated excellent agreement with a mean difference of 1.3% and a coefficient of variation (CV) of 11%. The average MCHC, hemoglobin concentration, and light path-lengths were 23.83 g/dl, 8.06 g/dl, and 3.92 µm, respectively. CONCLUSION: The proposed methodology can quantify hemodynamic measurements and produce functional images for visualization of the microcirculation in vivo.


Assuntos
Capilares , Músculo Esquelético , Animais , Ratos , Capilares/diagnóstico por imagem , Capilares/fisiologia , Hematócrito , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/irrigação sanguínea , Microcirculação/fisiologia , Hemoglobinas
3.
Exp Physiol ; 107(4): 265-282, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35178802

RESUMO

NEW FINDINGS: What is the topic of this review? The Zucker Diabetic-Sprague Dawley (ZDSD) rat is in the early adoption phase of use by researchers in the fields of diabetes, including prediabetes, obesity and metabolic syndrome. It is essential that physiology researchers choose preclinical models that model human type 2 diabetes appropriately and are aware of the limitations on experimental design. What advances does it highlight? Our review of the scientific literature finds that although sex, age and diets contribute to variability, the ZDSD phenotype and disease progression model the characteristics of humans who have prediabetes and diabetes, including co-morbidities. ABSTRACT: Type 2 diabetes (T2D) is a prevalent disease and a significant concern for global population health. For persons with T2D, clinical treatments target not only the characteristics of hyperglycaemia and insulin resistance, but also co-morbidities, such as obesity, cardiovascular and renal disease, neuropathies and skeletal bone conditions. The Zucker Diabetic-Sprague Dawley (ZDSD) rat is a rodent model developed for experimental studies of T2D. We reviewed the scientific literature to highlight the characteristics of T2D development and the associated phenotypes, such as metabolic syndrome, cardiovascular complications and bone and skeletal pathologies in ZDSD rats. We found that ZDSD phenotype characteristics are independent of leptin receptor signalling. The ZDSD rat develops prediabetes, then progresses to overt diabetes that is accelerated by introduction of a timed high-fat diet. In male ZDSD rats, glycated haemoglobin (HbA1c) increases at a constant rate from 7 to >30 weeks of age. Diabetic ZDSD rats are moderately hypertensive compared with other rat strains. Diabetes in ZDSD rats leads to endothelial dysfunction in specific vasculatures, impaired wound healing, decreased systolic and diastolic cardiac function, neuropathy and nephropathy. Changes to bone composition and the skeleton increase the risk of bone fractures. Zucker Diabetic-Sprague Dawley rats have not yet achieved widespread use by researchers. We highlight sex-related differences in the ZDSD phenotype and gaps in knowledge for future studies. Overall, scientific data support the premise that the phenotype and disease progression in ZDSD rats models the characteristics in humans. We conclude that ZDSD rats are an advantageous model to advance understanding and discovery of treatments for T2D through preclinical research.


Assuntos
Diabetes Mellitus Tipo 2 , Animais , Masculino , Obesidade/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Pesquisa Translacional Biomédica
4.
Microcirculation ; 28(5): e12698, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33817909

RESUMO

OBJECTIVE: To develop and validate a novel liquid microfluidic approach to deliver drugs to microscale regions of tissue while simultaneously allowing for visualization and quantification of microvascular blood flow. METHODS: Microfluidic devices were fabricated using soft lithographic techniques, molded in polydimethylsiloxane, and bound to a coverslip with a 600 × 300 µm micro-outlet. Sprague-Dawley rats, anesthetized with pentobarbital, were instrumented to monitor systemic parameters. The extensor digitorum longus muscle was dissected, externalized, and reflected across the device mounted on the stage of an inverted microscope. Doses (10-8 to 10-3  M) of adenosine triphosphate (ATP), acetylcholine, and phenylephrine (PE) were administered to the muscle via perfusion through the device. Microvascular blood flow directly overlying the micro-outlet was recorded at multiple focal depths. Red blood cell (RBC) velocity, supply rate, and hematocrit were measured from recordings. RESULTS: ATP significantly increased RBC velocity and supply rate. Increasing concentrations of PE caused a decrease in RBC velocity and supply rate. Perfusion changes were restricted to areas directly overlying the micro-outlet and within 500 µm. CONCLUSIONS: This novel microfluidic device allows for a controlled delivery of dissolved substances to constrained regions of microvasculature while simultaneously allowing for visualization and measurement of blood flow within discrete vessels and networks.


Assuntos
Dispositivos Lab-On-A-Chip , Músculo Esquelético , Trifosfato de Adenosina , Animais , Velocidade do Fluxo Sanguíneo , Capilares , Microcirculação , Fenilefrina/farmacologia , Ratos , Ratos Sprague-Dawley
5.
Microcirculation ; 28(6): e12699, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33853202

RESUMO

How oxygen (O2 ) supply to capillaries is regulated to match the tissue's demand is unknown. Erythrocytes have been proposed as sensors in this regulatory mechanism since they release ATP, a vasodilator, in an oxygen saturation (SO2 )-dependent manner. ATP causes hyperpolarization of endothelial cells resulting in conducted vasodilation to arterioles. OBJECTIVE: We propose individual capillary units can regulate their own O2 supply by direct communication to upstream arterioles via electrically coupled endothelium. METHODS: To test this hypothesis, we developed a transparent micro-exchange device for localized O2 exchange with surface capillaries of intact tissue. The device was fabricated with an O2 permeable micro-outlet 0.2 × 1.0 mm. Experiments were performed on rat extensor digitorum longus (EDL) muscle using dual wavelength video microscopy to measure capillary hemodynamics and erythrocyte SO2 . Responses to local O2 perturbations were measured with only capillaries positioned over the micro-outlet. RESULTS: Step changes in the gas mixture %O2 caused physiological changes in erythrocyte SO2 , and appropriate changes in flow to offset the O2 challenge if at least 3-4 capillaries were stimulated. CONCLUSION: These results support our hypothesis that individual capillary units play a role in regulating their erythrocyte supply in response to a changing O2 environment.


Assuntos
Capilares , Trifosfato de Adenosina/metabolismo , Animais , Capilares/metabolismo , Células Endoteliais/metabolismo , Microcirculação , Músculo Esquelético/metabolismo , Oxigênio/metabolismo , Saturação de Oxigênio , Ratos
6.
Clin Auton Res ; 31(6): 755-765, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34528146

RESUMO

PURPOSE: Following an acute exposure to hypoxia, sympathetic nerve activity remains elevated. However, this elevated sympathetic nerve activity does not elicit a parallel increase in vascular resistance suggesting a blunted sympathetic signaling [i.e. blunted sympathetic neurovascular transduction (sNVT)]. Therefore, we sought to quantify spontaneous sympathetic bursts and related changes in total peripheral resistance following hypoxic exposure. We hypothesized that following hypoxia sNVT would be blunted. METHODS: Nine healthy participants (n = 6 men; mean age 25 ± 2 years) were recruited. We collected data on muscle sympathetic nerve activity (MSNA) using microneurography and beat-by-beat total peripheral resistance (TPR) via finger photoplethysmography at baseline, during acute hypoxia and during two periods of recovery (recovery period 1, 0-10 min post hypoxia; recovery period 2, 10-20 min post hypoxia). MSNA burst sequences (i.e. singlets, doublets, triplets and quads+) were identified and coupled to changes in TPR over 15 cardiac cycles as an index of sNVT for burst sequences. A sNVT slope for each participant was calculated from the slope of the relationship between TPR plotted against normalized burst amplitude. RESULTS: The sNVT slope was blunted during hypoxia [Δ 0.0044 ± 0.0014 (mmHg/L/min)/(a.u.)], but unchanged following termination of hypoxia [recovery 1, Δ 0.031 ± 0.0019 (mmHg/L/min)/(a.u.); recovery 2, Δ 0.0038 ± 0.0014 (mmHg/L/min)/(a.u.) compared to baseline (Δ 0.038 ± 0.0015 (L/min/mmHg)/(a.u.)] (main effect of group p = 0.012). CONCLUSIONS: Contrary to our hypothesis, we have demonstrated that systemic sNVT is unchanged following hypoxia in young healthy adults.


Assuntos
Hipóxia , Sistema Nervoso Simpático , Adulto , Pressão Sanguínea , Frequência Cardíaca , Hemodinâmica , Humanos , Masculino , Músculo Esquelético , Músculos , Adulto Jovem
7.
Clin Auton Res ; 31(3): 443-451, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33560461

RESUMO

PURPOSE: Obstructive sleep apnea (OSA) is a common disorder (~ 4%) that augments sympathetic nerve activity (SNA) and elevates blood pressure. The relationship between sympathetic vasomotor outflow and vascular responsiveness, termed sympathetic neurovascular transduction (sNVT), has been sparsely characterized in patients with OSA. Therefore, we sought to quantify spontaneous sympathetic bursts and related changes in diastolic pressure. METHODS: Twelve participants with variable severities of OSA were recruited. We collected muscle sympathetic nerve activity (MSNA) (microneurography) and beat-by-beat diastolic pressure (finger photoplethysmography) during normoxia (FiO2 = 0.21) and hyperoxia (FiO2 = 1.0) to decrease MSNA burst frequency. MSNA burst sequences (i.e. singlets, doublets, triplets and quadruplets) were identified and coupled to changes in diastolic pressure over 15 cardiac cycles as an index of sNVT. sNVT slope for each individual was calculated from the slope of the relationship between peak responses in outcome plotted against normalized burst amplitude. RESULTS: sNVT slope was unchanged during hyperoxia compared to normoxia (normoxia 0.0024 ± 0.0011 Δ mmHg total activity [a.u.]-1 vs. hyperoxia 0.0029 ± 0.00098 Δ mmHg total activity [a.u.]-1; p = 0.14). sNVT slope was inversely associated with burst frequency during hyperoxia (r = -0.58; p = 0.04), but not normoxia (r = -0.11; p = 0.71). sNVT slope was inversely associated with the apnea-hypopnea index (AHI) (r = -0.62; p = 0.030), but not after age was considered. CONCLUSIONS: We have demonstrated that the prevailing MSNA frequency is unmatched to the level of sNVT, and this can be altered by acute hyperoxia.


Assuntos
Apneia Obstrutiva do Sono , Sistema Nervoso Simpático , Pressão Sanguínea , Humanos , Músculo Esquelético , Músculos
8.
Am J Physiol Heart Circ Physiol ; 319(3): H531-H538, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32734818

RESUMO

It has been suggested that sex differences in acute blood pressure fluctuations occur during the periods of time between bursts of muscle sympathetic nerve activity. Therefore, we tested the hypothesis that men experience more dynamic changes in mean arterial pressure (Finometer MIDI) than women during acute sympathoinhibition (i.e., slow breathing) in which bursts of sympathetic activity occur more infrequently than at rest. We tested healthy women (n = 9) and men (n = 9) of similar age (22 ± 2 vs. 23 ± 3 yr, P = 0.6). Custom software was used to calculate beat-by-beat changes in blood pressure following sympathetic burst and nonburst sequences (recorded using microneurography) during 10 min of supine rest and a 15-min bout of slow breathing. During slow breathing following nonburst sequences, women demonstrated smaller overall reductions in mean arterial pressure compared with men over the subsequent 15 cardiac cycles (P < 0.01). In addition, following a burst of sympathetic activity, women experienced greater overall increases in mean arterial pressure compared with men over the following 15 cardiac cycles (P < 0.01). Despite these differences, the peak and nadir changes in arterial pressure following burst and nonburst sequences were not different between the sexes (P = 0.45 and P = 0.48, burst and nonburst sequences, respectively). As such, these data suggest that women respond to a burst of sympathetic activity with more sustained increases in blood pressure than men, coupled with improved maintenance of blood pressure during acute periods of sympathetic quiescence. In other words, these findings suggest that men rely more on frequent bursts of sympathetic activity to acutely regulate arterial pressure than women.NEW & NOTEWORTHY We demonstrate that during acute sympathoinhibition, women demonstrate more sustained increases in blood pressure following sympathetic bursts of activity than men. Likewise, during prolonged sympathetic quiescence, blood pressure is less labile in women than men. This suggests that lower overall blood pressure in young women may not be mediated by smaller beat-by-beat changes in blood pressure in response to sympathetic outflow but may instead be mediated by a lower frequency of sympathetic bursts.


Assuntos
Pressão Arterial , Sistema Cardiovascular/inervação , Frequência Cardíaca , Músculo Esquelético/inervação , Sistema Nervoso Simpático/fisiologia , Adulto , Feminino , Humanos , Masculino , Inibição Neural , Distribuição Aleatória , Mecânica Respiratória , Fatores Sexuais , Fatores de Tempo , Adulto Jovem
9.
Am J Physiol Heart Circ Physiol ; 319(6): H1240-H1252, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32986967

RESUMO

High-altitude (>2,500 m) exposure results in increased muscle sympathetic nervous activity (MSNA) in acclimatizing lowlanders. However, little is known about how altitude affects MSNA in indigenous high-altitude populations. Additionally, the relationship between MSNA and blood pressure regulation (i.e., neurovascular transduction) at high-altitude is unclear. We sought to determine 1) how high-altitude effects neurocardiovascular transduction and 2) whether differences exist in neurocardiovascular transduction between low- and high-altitude populations. Measurements of MSNA (microneurography), mean arterial blood pressure (MAP; finger photoplethysmography), and heart rate (electrocardiogram) were collected in 1) lowlanders (n = 14) at low (344 m) and high altitude (5,050 m), 2) Sherpa highlanders (n = 8; 5,050 m), and 3) Andean (with and without excessive erythrocytosis) highlanders (n = 15; 4,300 m). Cardiovascular responses to MSNA burst sequences (i.e., singlet, couplet, triplet, and quadruplet) were quantified using custom software (coded in MATLAB, v.2015b). Slopes were generated for each individual based on peak responses and normalized total MSNA. High altitude reduced neurocardiovascular transduction in lowlanders (MAP slope: high altitude, 0.0075 ± 0.0060 vs. low altitude, 0.0134 ± 0.080; P = 0.03). Transduction was elevated in Sherpa (MAP slope, 0.012 ± 0.007) compared with Andeans (0.003 ± 0.002, P = 0.001). MAP transduction was not statistically different between acclimatizing lowlanders and Sherpa (MAP slope, P = 0.08) or Andeans (MAP slope, P = 0.07). When resting MSNA is accounted for (ANCOVA), transduction was inversely related to basal MSNA (bursts/minute) independent of population (RRI, r = 0.578 P < 0.001; MAP, r = -0.627, P < 0.0001). Our results demonstrate that transduction is blunted in individuals with higher basal MSNA, suggesting that blunted neurocardiovascular transduction is a physiological adaptation to elevated MSNA rather than an effect or adaptation specific to chronic hypoxic exposure.NEW & NOTEWORTHY This study has identified that sympathetically mediated blood pressure regulation is reduced following ascent to high-altitude. Additionally, we show that high altitude Andean natives have reduced blood pressure responsiveness to sympathetic nervous activity (SNA) compared with Nepalese Sherpa. However, basal sympathetic activity is inversely related to the magnitude of SNA-mediated fluctuations in blood pressure regardless of population or condition. These data set a foundation to explore more precise mechanisms of blood pressure control under conditions of persistent sympathetic activation and hypoxia.


Assuntos
Aclimatação , Altitude , Pressão Arterial , Sistema Cardiovascular/inervação , Frequência Cardíaca , Músculo Esquelético/inervação , Sistema Nervoso Simpático/fisiologia , Adulto , Feminino , Homeostase , Humanos , Masculino , Pessoa de Meia-Idade , Nepal , Peru , Fatores de Tempo
10.
Microcirculation ; 27(2): e12593, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31605649

RESUMO

OBJECTIVE: The effect of insulin on blood flow distribution within muscle microvasculature has been suggested to be important for glucose metabolism. However, the "capillary recruitment" hypothesis is still controversial and relies on studies using indirect contrast-enhanced ultrasound (CEU) methods. METHODS: We studied how hyperinsulinemia effects capillary blood flow in rat extensor digitorum longus (EDL) muscle during euglycemic hyperinsulinemic clamp using intravital video microscopy (IVVM). Additionally, we modeled blood flow and microbubble distribution within the vascular tree under conditions observed during euglycemic hyperinsulinemic clamp experiments. RESULTS: Euglycemic hyperinsulinemia caused an increase in erythrocyte (80 ± 25%, P < .01) and plasma (53 ± 12%, P < .01) flow in rat EDL microvasculature. We found no evidence of de novo capillary recruitment within, or among, capillary networks supplied by different terminal arterioles; however, erythrocyte flow became slightly more homogenous. Our computational model predicts that a decrease in asymmetry at arteriolar bifurcations causes redistribution of microbubble flow among capillaries already perfused with erythrocytes and plasma, resulting in 25% more microbubbles flowing through capillaries. CONCLUSIONS: Our model suggests increase in CEU signal during hyperinsulinemia reflects a redistribution of arteriolar flow and not de novo capillary recruitment. IVVM experiments support this prediction showing increases in erythrocyte and plasma flow and not capillary recruitment.


Assuntos
Capilares , Hiperinsulinismo , Microcirculação , Músculo Esquelético , Animais , Capilares/metabolismo , Capilares/fisiopatologia , Hiperinsulinismo/metabolismo , Hiperinsulinismo/fisiopatologia , Masculino , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiopatologia , Ratos , Ratos Sprague-Dawley
11.
BMC Public Health ; 20(1): 1482, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32998729

RESUMO

BACKGROUND: European Member States, the European Commission and its agencies work together to enhance preparedness and response for serious cross-border threats to health such as Ebola. Yet, common understanding of public health emergency preparedness across EU/EEA countries is challenging, because preparedness is a relatively new field of activity and is inherently fraught with uncertainty. A set of practical, widely accepted and easy to use recommendations for generic preparedness that bundles the activities described in separate guidance documents supports countries in preparing for any possible health threat. The aim of this consensus procedure was to identify and seek consensus from national-level preparedness experts from EU/EEA countries on key recommendations of public health emergency preparedness. METHODS: To identify key recommendations and to prioritize the recommendations we started with a literature consensus procedure, followed by a modified Delphi method for consultation of public health emergency preparedness leaders of EU/EEA countries. This consisted of six consecutive steps: a questionnaire to achieve consensus on a core set of recommendations, a face-to-face consultation, preselection of prioritized recommendations, a questionnaire to achieve consensus on the prioritized set and a face-to-face consensus meeting to further prioritize recommendations. RESULTS: As a result, EU/EEA experts selected 149 recommendations as core preparedness principles and prioritized 42. The recommendations were grouped in the seven domains: governance (57), capacity building and maintenance (11), surveillance (19), risk-assessment (16), risk- and crisis management (35), post-event evaluation (6) and implementation of lessons learned (5). CONCLUSIONS: This prioritised set of consensus principles can provide a foundation for countries aiming to evaluate and improve their preparedness for public health emergencies. The recommendations are practical, support generic preparedness planning, and can be used by all countries irrespective of their current level of preparedness.


Assuntos
Defesa Civil , Planejamento em Desastres , Surtos de Doenças , Europa (Continente) , União Europeia , Humanos , Saúde Pública , Encaminhamento e Consulta
12.
J Neurosci ; 38(50): 10595-10606, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30355631

RESUMO

Intracellular neurofibrillary tangles (NFTs) composed of tau protein are a neuropathological hallmark of several neurodegenerative diseases, the most common of which is Alzheimer's disease (AD). For some time NFTs were considered the primary cause of synaptic dysfunction and neuronal death, however, more recent evidence suggests that soluble aggregates of tau are key drivers of disease. Here we investigated the effect of different tau species on synaptic plasticity in the male rat hippocampus in vivo Intracerebroventricular injection of soluble aggregates formed from either wild-type or P301S human recombinant tau potently inhibited hippocampal long-term potentiation (LTP) at CA3-to-CA1 synapses. In contrast, tau monomers and fibrils appeared inactive. Neither baseline synaptic transmission, paired-pulse facilitation nor burst response during high-frequency conditioning stimulation was affected by the soluble tau aggregates. Similarly, certain AD brain soluble extracts inhibited LTP in a tau-dependent manner that was abrogated by either immunodepletion with, or coinjection of, a mid-region anti-tau monoclonal antibody (mAb), Tau5. Importantly, this tau-mediated block of LTP was prevented by administration of mAbs selective for the prion protein (PrP). Specifically, mAbs to both the mid-region (6D11) and N-terminus (MI-0131) of PrP prevented inhibition of LTP by both recombinant and brain-derived tau. These findings indicate that PrP is a mediator of tau-induced synaptic dysfunction.SIGNIFICANCE STATEMENT Here we report that certain soluble forms of tau selectively disrupt synaptic plasticity in the live rat hippocampus. Further, we show that monoclonal antibodies to cellular prion protein abrogate the impairment of long-term potentiation caused both by recombinant and Alzheimer's disease brain-derived soluble tau. These findings support a critical role for cellular prion protein in the deleterious synaptic actions of extracellular soluble tau in tauopathies, including Alzheimer's disease. Thus, approaches targeting cellular prion protein, or downstream pathways, might provide an effective strategy for developing therapeutics.


Assuntos
Hipocampo/metabolismo , Hipocampo/patologia , Plasticidade Neuronal/fisiologia , Proteínas PrPC/metabolismo , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Inibidores da Angiogênese/farmacologia , Animais , Feminino , Hipocampo/efeitos dos fármacos , Humanos , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Proteínas Priônicas/metabolismo , Ratos
13.
J Physiol ; 597(14): 3687-3696, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31106429

RESUMO

KEY POINTS: Normotensive pregnancy is associated with elevated sympathetic nervous system activity yet normal or reduced blood pressure. It represents a unique period of apparent healthy sympathetic hyperactivity. The present study models the blood pressure and heart rate (ECG R-R interval) responses to fluctuations in sympathetic nervous system activity aiming to understand neurocardiovascular transduction. The reported data clearly demonstrate that transduction of sympathetic nervous system signalling to systemic cardiovascular outcomes is reduced in normotensive pregnancy. These data are important for understanding how blood pressure regulation adapts during normotensive pregnancy and set the foundation for exploring similar mechanisms in hypertensive pregnancies. ABSTRACT: Previously, we described sympathetic nervous system hyperactivity yet decreased blood pressure responses to stress in normotensive pregnancy. To address the hypothesis that pregnant women have blunted neurocardiovascular transduction we assessed the relationship between spontaneous bursts of sympathetic nerve activity (SNA) and fluctuations in mean arterial blood pressure and R-R interval. Resting SNA, blood pressure and ECG were obtained in pregnant (third trimester, n = 18) and non-pregnant (n = 18) women matched for age and pre-/non-pregnant body mass index. Custom software modelled beat-by-beat pressure (photoplethysmography) and R-R interval in relation to sequences of SNA bursts and non-bursts (peroneal microneurography). Sequences were grouped by the number of bursts and non-bursts [singlets, doublets, triplets and quadruplet (four or more)] and mean blood pressure and R-R interval were tracked for 15 subsequent cardiac cycles. Similar sequences were overlaid and averaged. Peak mean pressure in relation to sequences of SNA was reduced in pregnant vs. non-pregnant women (doublets: 1.6 ± 1.1 mmHg vs. 3.6 ± 3.1 mmHg, P < 0.05; triplets: 2.4 ± 1.2 mmHg vs. 3.4 ± 2.1 mmHg, P < 0.05; quadruplets: 3.0 ± 1.0 mmHg vs. 5.5 ± 3.7 mmHg, P < 0.05). The nadir R-R interval following burst sequences was also smaller in pregnant vs. non-pregnant women (singlets: -0.01 ± 0.01 s vs. -0.04 ± 0.04 s, P < 0.05; doublets: -0.02 ± 0.03 s vs. -0.05 ± 0.04 s, P < 0.05; triplets: -0.02 ± 0.01 s vs. -0.07 ± 0.04 s, P < 0.05; quadruplets: -0.01 ± 0.01 s vs. -0.09 ± 0.09 s, P < 0.05). There were no differences between groups in the mean arterial pressure and R-R interval responses to non-burst sequences. Our data clearly indicate blunted systemic neurocardiovascular transduction during normotensive pregnancy. We propose that blunted transduction is a positive adaptation protecting pregnant women from the cardiovascular consequences of sympathetic hyperactivity.


Assuntos
Sistema Nervoso Simpático/fisiologia , Adulto , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Feminino , Frequência Cardíaca/fisiologia , Humanos , Gravidez , Terceiro Trimestre da Gravidez/fisiologia , Descanso/fisiologia
14.
Neurobiol Dis ; 127: 582-590, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30910746

RESUMO

Soluble synaptotoxic aggregates of the main pathological proteins of Alzheimer's disease, amyloid ß-protein (Aß) and tau, have rapid and potent inhibitory effects on long-term potentiation (LTP). Although the promotion of synaptic weakening mechanisms, including long-term depression (LTD), is posited to mediate LTP inhibition by Aß, little is known regarding the action of exogenous tau on LTD. The present study examined the ability of different assemblies of full-length human tau to affect LTD in the dorsal hippocampus of the anaesthetized rat. Unlike Aß, intracerebroventricular injection of soluble aggregates of tau (SτAs), but not monomers or fibrils, potently increased the threshold for LTD induction in a manner that required cellular prion protein. However, MTEP, an antagonist of the putative prion protein coreceptor metabotropic glutamate receptor 5, did not prevent the disruption of synaptic plasticity by SτAs. In contrast, systemic treatment with Ro 25-6981, a selective antagonist at GluN2B subunit-containing NMDA receptors, reduced SτA-mediated inhibition of LTD, but not LTP. Intriguingly, SτAs completely blocked Aß-facilitated LTD, whereas a subthreshold dose of SτAs facilitated Aß-mediated inhibition of LTP. Overall, these findings support the importance of cellular prion protein in mediating a range of, sometimes opposing, actions of soluble Aß and tau aggregates with different effector mechanisms on synaptic plasticity.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Hipocampo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Agregados Proteicos/fisiologia , Proteínas tau/metabolismo , Animais , Hipocampo/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Piridinas/farmacologia , Ratos , Receptor de Glutamato Metabotrópico 5/agonistas , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Tiazóis/farmacologia
15.
Neurobiol Dis ; 132: 104582, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31445162

RESUMO

There are no approved drug therapies that can prevent or slow the progression of Parkinson's disease (PD). Accumulation and aggregation of α-synuclein protein is observed throughout the nervous system in PD. α-Synuclein is a core component of Lewy bodies and neurites that neuropathologically define PD, suggesting that α-synuclein may be a key causative agent in PD. Recent experimental data suggest that PD progression may arise due to spreading of pathological forms of extracellular α-synuclein throughout the brain via a cellular release, uptake and seeding mechanism. We have developed a high affinity α-synuclein antibody, MEDI1341, that can enter the brain, sequester extracellular α-synuclein and attenuate α-synuclein spreading in vivo. MEDI1341 binds both monomeric and aggregated forms of α-synuclein. In vitro, MEDI1341 blocks cell-to-cell transmission of pathologically relevant α-synuclein preformed fibrils (pffs). After intravenous injection into rats and cynomolgus monkeys, MEDI1341 rapidly enters the central nervous system and lowers free extracellular α-synuclein levels in the interstitial fluid (ISF) and cerebrospinal fluid (CSF) compartments. Using a novel lentiviral-based in vivo mouse model of α-synuclein spreading in the brain, we show that treatment with MEDI1341 significantly reduces α-synuclein accumulation and propagation along axons. In this same model, we demonstrate that an effector-null version of the antibody was equally as effective as one with effector function. MEDI1341 is now in Phase 1 human clinical trial testing as a novel treatment for α-synucleinopathies including PD with the aim to slow or halt disease progression.


Assuntos
Anticorpos Monoclonais/farmacologia , Encéfalo/efeitos dos fármacos , alfa-Sinucleína/antagonistas & inibidores , Animais , Especificidade de Anticorpos , Humanos , Macaca fascicularis , Camundongos , Ratos
16.
Circ Res ; 120(9): 1453-1465, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28174322

RESUMO

RATIONALE: Angiogenesis occurs after ischemic injury to skeletal muscle, and enhancing this response has been a therapeutic goal. However, to appropriately deliver oxygen, a precisely organized and exquisitely responsive microcirculation must form. Whether these network attributes exist in a regenerated microcirculation is unknown, and methodologies for answering this have been lacking. OBJECTIVE: To develop 4-dimensional methodologies for elucidating microarchitecture and function of the reconstructed microcirculation in skeletal muscle. METHODS AND RESULTS: We established a model of complete microcirculatory regeneration after ischemia-induced obliteration in the mouse extensor digitorum longus muscle. Dynamic imaging of red blood cells revealed the regeneration of an extensive network of flowing neo-microvessels, which after 14 days structurally resembled that of uninjured muscle. However, the skeletal muscle remained hypoxic. Red blood cell transit analysis revealed slow and stalled flow in the regenerated capillaries and extensive arteriolar-venular shunting. Furthermore, spatial heterogeneity in capillary red cell transit was highly constrained, and red blood cell oxygen saturation was low and inappropriately variable. These abnormalities persisted to 120 days after injury. To determine whether the regenerated microcirculation could regulate flow, the muscle was subjected to local hypoxia using an oxygen-permeable membrane. Hypoxia promptly increased red cell velocity and flux in control capillaries, but in neocapillaries, the response was blunted. Three-dimensional confocal imaging revealed that neoarterioles were aberrantly covered by smooth muscle cells, with increased interprocess spacing and haphazard actin microfilament bundles. CONCLUSIONS: Despite robust neovascularization, the microcirculation formed by regenerative angiogenesis in skeletal muscle is profoundly flawed in both structure and function, with no evidence for normalizing over time. This network-level dysfunction must be recognized and overcome to advance regenerative approaches for ischemic disease.


Assuntos
Hipóxia/diagnóstico por imagem , Isquemia/diagnóstico por imagem , Microcirculação , Microscopia Confocal/métodos , Microscopia de Vídeo/métodos , Microvasos/diagnóstico por imagem , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Animais , Arteríolas/diagnóstico por imagem , Arteríolas/fisiopatologia , Capilares/diagnóstico por imagem , Capilares/fisiopatologia , Hipóxia Celular , Microambiente Celular , Modelos Animais de Doenças , Eritrócitos/metabolismo , Membro Posterior , Hipóxia/sangue , Hipóxia/fisiopatologia , Interpretação de Imagem Assistida por Computador , Isquemia/sangue , Isquemia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Microvasos/fisiopatologia , Oxigênio/sangue , Fluxo Sanguíneo Regional , Fatores de Tempo , Vênulas/diagnóstico por imagem , Vênulas/fisiopatologia
18.
Microcirculation ; 24(2)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27991711

RESUMO

OBJECTIVES: The purpose of this study was to model how CD variability affects tissue oxygenation under resting and exercise conditions. Additionally, we examine how CD impacts glucose and insulin transport in skeletal muscle. METHODS: We applied an established 3D finite difference model of oxygen transport to predict tissue oxygenation using FCD, hemodynamics, and SO2 measurements from a previous study. A 2D finite element model of glucose transport was applied to predict glucose and insulin uptake in PP and fasting conditions using the same range of CD. RESULTS: Control simulations used CD ranging from 562.5 to 781.3 capillaries/mm2 , whereas prediabetic densities ranged from 375.0 to 593.8 capillaries/mm2 . Mean tissue PO2 was 30.6±4.6 to 40.5±3.6 mm Hg for rest and 19.6±6.7 to 33.27±4.7 mm Hg for control and prediabetic simulations, respectively. Mean PP glucose concentrations were 5.85±1.13 mmol/L in the control group and 5.11±1.28 in the prediabetic simulations. Glucose uptake rates were 35% lower in the lowest capillary CD case compared to the high CD simulation. CONCLUSIONS: Our simulations predict that CD decreases can have a substantial effect on oxygen delivery and glucose disposal across the observed physiological ranges of capillarization.


Assuntos
Capilares/fisiologia , Simulação por Computador , Glucose/metabolismo , Oxigênio/metabolismo , Estado Pré-Diabético/metabolismo , Animais , Capilares/anatomia & histologia , Exercício Físico/fisiologia , Humanos , Resistência à Insulina , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Esforço Físico/fisiologia , Descanso/fisiologia
19.
Proc Natl Acad Sci U S A ; 110(23): 9535-40, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23690619

RESUMO

Filamentous inclusions made of hyperphosphorylated tau are characteristic of numerous human neurodegenerative diseases, including Alzheimer's disease, tangle-only dementia, Pick disease, argyrophilic grain disease (AGD), progressive supranuclear palsy, and corticobasal degeneration. In Alzheimer's disease and AGD, it has been shown that filamentous tau appears to spread in a stereotypic manner as the disease progresses. We previously demonstrated that the injection of brain extracts from human mutant P301S tau-expressing transgenic mice into the brains of mice transgenic for wild-type human tau (line ALZ17) resulted in the assembly of wild-type human tau into filaments and the spreading of tau inclusions from the injection sites to anatomically connected brain regions. Here we injected brain extracts from humans who had died with various tauopathies into the hippocampus and cerebral cortex of ALZ17 mice. Argyrophilic tau inclusions formed in all cases and following the injection of the corresponding brain extracts, we recapitulated the hallmark lesions of AGD, PSP and CBD. Similar inclusions also formed after intracerebral injection of brain homogenates from human tauopathies into nontransgenic mice. Moreover, the induced formation of tau aggregates could be propagated between mouse brains. These findings suggest that once tau aggregates have formed in discrete brain areas, they become self-propagating and spread in a prion-like manner.


Assuntos
Encéfalo/metabolismo , Tauopatias/fisiopatologia , Extratos de Tecidos/farmacologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Western Blotting , Encéfalo/patologia , Cruzamentos Genéticos , Feminino , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Extratos de Tecidos/administração & dosagem , Transplante Heterólogo , Proteínas tau/genética
20.
J Biol Chem ; 289(17): 11897-11905, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24584936

RESUMO

Filaments made of α-synuclein form the characteristic Lewy pathology in Parkinson and other diseases. The formation of α-synuclein filaments can be reproduced in vitro by incubation of recombinant protein, but the filament growth is very slow and highly variable and so unsuitable for fast high throughput anti-aggregation drug screening. To overcome this obstacle we have investigated whether the protein misfolding cyclic amplification (PMCA) technique, used for fast amplification of prion protein aggregates, could be adapted for growing α-synuclein aggregates and thus suitable for screening of drugs to affect α-synuclein aggregation for the treatment of the yet incurable α-synucleinopathies. Circular dichroism, electron microscopy, and native and SDS-polyacrylamide gels were used to demonstrate α-synuclein aggregate formation by PMCA, and the strain imprint of the α-synuclein fibrils was studied by proteinase K digestion. We also demonstrated that α-synuclein fibrils are able to seed new α-synuclein PMCA reactions and to enter and aggregate in cells in culture. In particular, we have generated a line of "chronically infected" cells, which transmit α-synuclein aggregates even after multiple passages. To evaluate the sensitivity of the PMCA system as an α-synuclein anti-aggregating drug screening assay a panel of 10 drugs was tested. Anti-amyloid compounds proved efficient in inhibiting α-synuclein fibril formation induced by PMCA. Our results show that α-synuclein PMCA is a fast and reproducible system that could be used as a high throughput screening method for finding new α-synuclein anti-aggregating compounds.


Assuntos
Amiloide/metabolismo , Dobramento de Proteína , alfa-Sinucleína/antagonistas & inibidores , Linhagem Celular , Humanos , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA