Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 141(25): 3039-3054, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37084386

RESUMO

Red blood cell disorders can result in severe anemia. One such disease congenital dyserythropoietic anemia IV (CDA IV) is caused by the heterozygous mutation E325K in the transcription factor KLF1. However, studying the molecular basis of CDA IV is severely impeded by the paucity of suitable and adequate quantities of material from patients with anemia and the rarity of the disease. We, therefore, took a novel approach, creating a human cellular disease model system for CDA IV that accurately recapitulates the disease phenotype. Next, using comparative proteomics, we reveal extensive distortion of the proteome and a wide range of disordered biological processes in CDA IV erythroid cells. These include downregulated pathways the governing cell cycle, chromatin separation, DNA repair, cytokinesis, membrane trafficking, and global transcription, and upregulated networks governing mitochondrial biogenesis. The diversity of such pathways elucidates the spectrum of phenotypic abnormalities that occur with CDA IV and impairment to erythroid cell development and survival, collectively explaining the CDA IV disease phenotype. The data also reveal far more extensive involvement of KLF1 in previously assigned biological processes, along with novel roles in the regulation of intracellular processes not previously attributed to this transcription factor. Overall, the data demonstrate the power of such a model cellular system to unravel the molecular basis of disease and how studying the effects of a rare mutation can reveal fundamental biology.


Assuntos
Anemia Diseritropoética Congênita , Humanos , Anemia Diseritropoética Congênita/genética , Mutação , Regulação da Expressão Gênica , Fenótipo , Fatores de Transcrição/genética
2.
Haematologica ; 106(11): 2859-2873, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33054117

RESUMO

Human ZNF648 is a novel poly C-terminal C2H2 zinc finger protein identified amongst the most dysregulated proteins in erythroid cells differentiated from iPSC. Its nuclear localisation and structure indicate it is likely a DNA-binding protein. Using a combination of ZNF648 overexpression in an iPSC line and primary adult erythroid cells, ZNF648 knockdown in primary adult erythroid cells and megakaryocytes, comparative proteomics and transcriptomics we show that ZNF648 is required for both erythroid and megakaryocyte differentiation. Orthologues of ZNF648 were detected across Mammals, Reptilia, Actinopterygii, in some Aves, Amphibia and Coelacanthiformes suggesting the gene originated in the common ancestor of Osteichthyes (Euteleostomi or bony fish). Conservation of the C-terminal zinc finger domain is higher, with some variation in zinc finger number but a core of at least six zinc fingers conserved across all groups, with the N-terminus recognisably similar within but not between major lineages. This suggests the N-terminus of ZNF648 evolves faster than the C-terminus, however this is not due to exon-shuffling as the entire coding region of ZNF648 is within a single exon. As for other such transcription factors, the N-terminus likely carries out regulatory functions, but showed no sequence similarity to any known domains. The greater functional constraint on the zinc finger domain suggests ZNF648 binds at least some similar regions of DNA in the different organisms. However, divergence of the N-terminal region may enable differential expression, allowing adaptation of function in the different organisms.


Assuntos
Eritrócitos/citologia , Megacariócitos/citologia , Fatores de Transcrição , Dedos de Zinco , Animais , Diferenciação Celular/genética , Proteínas de Ligação a DNA/metabolismo , Humanos
4.
Stem Cells ; 35(4): 886-897, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28026072

RESUMO

Blood transfusion is widely used in the clinic but the source of red blood cells (RBCs) is dependent on donors, procedures are susceptible to transfusion-transmitted infections and complications can arise from immunological incompatibility. Clinically-compatible and scalable protocols that allow the production of RBCs from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been described but progress to translation has been hampered by poor maturation and fragility of the resultant cells. Genetic programming using transcription factors has been used to drive lineage determination and differentiation so we used this approach to assess whether exogenous expression of the Erythroid Krüppel-like factor 1 (EKLF/KLF1) could augment the differentiation and stability of iPSC-derived RBCs. To activate KLF1 at defined time points during later stages of the differentiation process and to avoid transgene silencing that is commonly observed in differentiating pluripotent stem cells, we targeted a tamoxifen-inducible KLF1-ERT2 expression cassette into the AAVS1 locus. Activation of KLF1 at day 10 of the differentiation process when hematopoietic progenitor cells were present, enhanced erythroid commitment and differentiation. Continued culture resulted the appearance of more enucleated cells when KLF1 was activated which is possibly due to their more robust morphology. Globin profiling indicated that these conditions produced embryonic-like erythroid cells. This study demonstrates the successful use of an inducible genetic programing strategy that could be applied to the production of many other cell lineages from human induced pluripotent stem cells with the integration of programming factors into the AAVS1 locus providing a safer and more reproducible route to the clinic. Stem Cells 2017;35:886-897.


Assuntos
Diferenciação Celular , Eritrócitos/citologia , Eritrócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Fatores de Transcrição Kruppel-Like/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células , Eritropoese/genética , Regulação da Expressão Gênica , Globinas/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células K562 , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo
5.
Mol Cell Proteomics ; 15(6): 1938-46, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27006477

RESUMO

Cord blood stem cells are an attractive starting source for the production of red blood cells in vitro for therapy because of additional expansion potential compared with adult peripheral blood progenitors and cord blood banks usually being more representative of national populations than blood donors. Consequently, it is important to establish how similar cord RBCs are to adult cells. In this study, we used multiplex tandem mass tag labeling combined with nano-LC-MS/MS to compare the proteome of adult and cord RBCs and reticulocytes. 2838 unique proteins were identified, providing the most comprehensive compendium of RBC proteins to date. Using stringent criteria, 1674 proteins were quantified, and only a small number differed in amount between adult and cord RBC. We focused on proteins critical for RBC function. Of these, only the expected differences in globin subunits, along with higher levels of carbonic anhydrase 1 and 2 and aquaporin-1 in adult RBCs would be expected to have a phenotypic effect since they are associated with the differences in gaseous exchange between adults and neonates. Since the RBC and reticulocyte samples used were autologous, we catalogue the change in proteome following reticulocyte maturation. The majority of proteins (>60% of the 1671 quantified) reduced in abundance between 2- and 100-fold following maturation. However, ∼5% were at a higher level in RBCs, localized almost exclusively to cell membranes, in keeping with the known clearance of intracellular recycling pools during reticulocyte maturation. Overall, these data suggest that, with respect to the proteome, there is no barrier to the use of cord progenitors for the in vitro generation of RBCs for transfusion to adults other than the expression of fetal, not adult, hemoglobin.


Assuntos
Células Eritroides/citologia , Sangue Fetal/citologia , Proteoma/análise , Proteômica/métodos , Reticulócitos/citologia , Adulto , Anidrase Carbônica I/metabolismo , Anidrase Carbônica II/metabolismo , Diferenciação Celular , Cromatografia Líquida , Células Eritroides/metabolismo , Sangue Fetal/metabolismo , Humanos , Recém-Nascido , Reticulócitos/metabolismo , Espectrometria de Massas em Tandem
7.
Haematologica ; 99(11): 1677-85, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25107887

RESUMO

A major barrier to the clinical use of erythrocytes generated in vitro from pluripotent stem cells or cord blood progenitors is failure of these erythrocytes to express adult hemoglobin. The key regulators of globin switching KLF1 and BCL11A are absent or at a lower level than in adult cells in K562 and erythroid cells differentiated in vitro from induced pluripotent stem cells and cord blood progenitors. Transfection or transduction of K562 and cord blood erythroid cells with either KLF1 or BCL11A-XL had little effect on ß-globin expression. In contrast, transduction with both transcription factors stimulated ß-globin expression. Similarly, increasing the level of BCL11A-XL in the induced pluripotent stem cell-derived erythroid cell line HiDEP-1, which has levels of endogenous KLF1 similar to adult cells but lacks BCL11A, resulted in levels of ß-globin equivalent to that of adult erythroid cells. Interestingly, this increase in ß-globin was coincident with a decrease in ε- and ζ-, but not γ-globin, implicating BCL11A in repression of embryonic globin expression. The data show that KLF1 and BCL11A-XL together are required, but sufficient to induce adult levels of ß-globin in induced pluripotent stem cell and cord blood-derived erythroid cells that intrinsically express embryonic or fetal globin.


Assuntos
Proteínas de Transporte/genética , Células Eritroides/metabolismo , Hemoglobina Fetal/genética , Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Proteínas Nucleares/genética , Transdução Genética , Globinas beta/genética , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Diferenciação Celular/genética , Linhagem Celular , Células Eritroides/citologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células K562 , Fenótipo , Proteínas Repressoras , Transfecção , Globinas épsilon/genética , gama-Globinas/genética
8.
Front Mol Biosci ; 11: 1370933, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690294

RESUMO

Introduction: Erythroblastic island (EBI) macrophages play an essential role in the production and maturation of the vast numbers of red blood cells (RBCs) that are produced throughout life. Their location within the bone marrow makes it difficult to study the cellular and molecular interactions associated with their action so we have used an in vitro model of the EBI niche using macrophages derived from human induced pluripotent stem cells (hiPSCs). We previously demonstrated that the activation of the transcription factor KLF1 enhanced the activity of hiPSC-derived EBI macrophages. Methods: To elucidate the mechanisms associated with EBI-like activity we carried out a quantitative proteomic analysis and assessed the role of extracellular vesicles using Nanosight Tracking analyses and media filtration. Results and Discussion: Gene ontology analysis showed that many of the proteins upregulated by KLF1 were protein-binding factors, some of which were associated with the cell membrane or extracellular vesicles We demonstrated that filtration of macrophage-conditioned media resulted in a reduction in the supportive effects on erythroid cell viability and maturation implying a role for extracellular vesicles but this was not KLF1 dependent. Pathway analyses of the proteomic data revealed that proteins upregulated by KLF1 were associated with the citric acid cycle, pyruvate metabolism and ATP synthesis indicating that KLF1-activated macrophages had a metabolic profile comparable to a pro-reparative phenotype. This study has generated a proteomic dataset that could provide new insights into the role of macrophages within the EBI niche and has indicated a potential role for extracellular vesicles in the differentiation and maturation of RBCs in vitro. Further research will aid in the production of RBCs in vitro for use in disease modelling and cell therapy.

9.
Blood ; 118(11): 3137-45, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21778342

RESUMO

Mutations in the human erythroid Krüppel-like factor (EKLF) can lead to either anemia or the benign InLu phenotype. To elucidate the relationship between these mutations and the differing phenotypes, we prepared recombinant forms of wild-type and 5 mutant EKLF proteins and quantitated their binding affinity to a range of EKLF-regulated genes. Missense mutants (R328H, R328L, and R331G) from persons with InLu phenotype did not bind DNA. Hence, as with the heterozygous loss of function nonsense (L127X, S270X, and K292X) and frameshift (P190Lfs and R319Efs) EKLF mutations, monoallelic loss of EKLF does not result in haploinsufficiency at all loci. In contrast, K332Q has a slightly reduced DNA binding affinity (∼ 2-fold) for all promoters examined but exhibits a phenotype only in a compound heterozygote with a nonfunctional allele. E325K also has a reduced, but significant, binding affinity, particularly for the ß-globin gene but results in a disease phenotype even with the wild-type allele expressed, although not as a classic dominant-negative mutant. E325K protein may therefore actively interfere with EKLF-dependent processes by destabilizing transcription complexes, providing a rational explanation for the severity of the disease phenotype. Our study highlights the critical role of residues within the second EKLF zinc finger domain.


Assuntos
Doença/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/fisiologia , Regiões Promotoras Genéticas , Sequência de Aminoácidos , Sítios de Ligação/genética , Células Cultivadas , Humanos , Fatores de Transcrição Kruppel-Like/química , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mutação/fisiologia , Fenótipo , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/fisiologia , Homologia de Sequência de Aminoácidos , Índice de Gravidade de Doença , Especificidade por Substrato/genética , Ativação Transcricional , Dedos de Zinco/genética
10.
Curr Opin Hematol ; 19(6): 486-93, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22954727

RESUMO

PURPOSE OF REVIEW: This review describes the genetics of unusual blood group phenotypes, particularly those with altered expression of Lutheran antigens, and how this area of study has informed our understanding of erythropoiesis in general and haemoglobin switching in particular. RECENT FINDINGS: Mutations in erythroid transcription factors GATA1 (GATA1 binding protein 1) and KLF1 (Kruppel-like factor 1) cause benign and disease phenotypes in humans [X-linked Lu(a-b-) phenotype, In(Lu) blood group phenotype, hereditary persistence of foetal haemoglobin, borderline HbA(2), and congenital dyserythropoietic anaemia (CDA)]. These studies explain the occurrence of rare blood group phenotypes with simultaneous altered expression of antigens from several blood group systems and illuminate the role of KLF1 in gamma and delta globin gene regulation. SUMMARY: The study of rare blood group phenotypes is a potent tool for discovery of mutations in human genes. Elucidation of the molecular basis of the rare In(Lu) phenotype revealed the first mutations in human KLF1. Subsequently, numerous additional mutations have been described, one of which causes a rare form of CDA. Analysis of the X-linked Lu(a-b-) phenotype revealed a mutation in the C-terminal domain of human GATA1. The apparent sensitivity of the Lutheran glycoprotein to alterations in GATA1 and KLF1 activity suggest that it could be a useful biomarker of erythroid transcription factor mutation.


Assuntos
Antígenos de Grupos Sanguíneos/genética , Fator de Transcrição GATA1/genética , Fatores de Transcrição Kruppel-Like/genética , Mutação , Fator de Transcrição GATA1/metabolismo , Regulação da Expressão Gênica , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Fenótipo
11.
Nat Commun ; 14(1): 6260, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803026

RESUMO

ß-thalassemia is a prevalent genetic disorder causing severe anemia due to defective erythropoiesis, with few treatment options. Studying the underlying molecular defects is impeded by paucity of suitable patient material. In this study we create human disease cellular model systems for ß-thalassemia by gene editing the erythroid line BEL-A, which accurately recapitulate the phenotype of patient erythroid cells. We also develop a high throughput compatible fluorometric-based assay for evaluating severity of disease phenotype and utilize the assay to demonstrate that the lines respond appropriately to verified reagents. We next use the lines to perform extensive analysis of the altered molecular mechanisms in ß-thalassemia erythroid cells, revealing upregulation of a wide range of biological pathways and processes along with potential novel targets for therapeutic investigation. Overall, the lines provide a sustainable supply of disease cells as research tools for identifying therapeutic targets and as screening platforms for new drugs and reagents.


Assuntos
Talassemia beta , Humanos , Talassemia beta/genética , Talassemia beta/terapia , Eritropoese/genética , Células Eritroides , Fenótipo
12.
Biochem J ; 435(2): 401-9, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21269272

RESUMO

hGAPDS (human sperm-specific glyceraldehyde-3-phosphate dehydrogenase) is a glycolytic enzyme essential for the survival of spermatozoa, and constitutes a potential target for non-hormonal contraception. However, enzyme characterization of GAPDS has been hampered by the difficulty in producing soluble recombinant protein. In the present study, we have overexpressed in Escherichia coli a highly soluble form of hGAPDS truncated at the N-terminus (hGAPDSΔN), and crystallized the homotetrameric enzyme in two ligand complexes. The hGAPDSΔN-NAD+-phosphate structure maps the two anion-recognition sites within the catalytic pocket that correspond to the conserved Ps site and the newly recognized Pi site identified in other organisms. The hGAPDSΔN-NAD+-glycerol structure shows serendipitous binding of glycerol at the Ps and new Pi sites, demonstrating the propensity of these anion-recognition sites to bind non-physiologically relevant ligands. A comparison of kinetic profiles between hGAPDSΔN and its somatic equivalent reveals a 3-fold increase in catalytic efficiency for hGAPDSΔN. This may be attributable to subtle amino acid substitutions peripheral to the active centre that influence the charge properties and protonation states of catalytic residues. Our data therefore elucidate structural and kinetic features of hGAPDS that might provide insightful information towards inhibitor development.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenases/química , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Espermatozoides/enzimologia , Animais , Sítios de Ligação , Catálise , Gliceraldeído-3-Fosfato Desidrogenases/genética , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Masculino , Modelos Biológicos , Modelos Moleculares , Especificidade de Órgãos/genética , Fosfatos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Ratos , Espermatogênese/genética , Espermatozoides/metabolismo
13.
Sci Rep ; 11(1): 22483, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795367

RESUMO

Polycythaemia vera (PV) is a haematological disorder caused by an overproduction of erythroid cells. To date, the molecular mechanisms involved in the disease pathogenesis are still ambiguous. This study aims to identify aberrantly expressed proteins in erythroblasts of PV patients by utilizing mass spectrometry-based proteomic analysis. Haematopoietic stem cells (HSCs) were isolated from newly-diagnosed PV patients, PV patients who have received cytoreductive therapy, and healthy subjects. In vitro erythroblast expansion confirmed that the isolated HSCs recapitulated the disease phenotype as the number of erythroblasts from newly-diagnosed PV patients was significantly higher than those from the other groups. Proteomic comparison revealed 17 proteins that were differentially expressed in the erythroblasts from the newly-diagnosed PV patients compared to those from healthy subjects, but which were restored to normal levels in the patients who had received cytoreductive therapy. One of these proteins was S-methyl-5'-thioadenosine phosphorylase (MTAP), which had reduced expression in PV patients' erythroblasts. Furthermore, MTAP knockdown in normal erythroblasts was shown to enhance their proliferative capacity. Together, this study identifies differentially expressed proteins in erythroblasts of healthy subjects and those of PV patients, indicating that an alteration of protein expression in erythroblasts may be crucial to the pathology of PV.


Assuntos
Policitemia Vera/tratamento farmacológico , Policitemia Vera/metabolismo , Purina-Núcleosídeo Fosforilase , Adulto , Idoso , Proliferação de Células , Eritroblastos/metabolismo , Eritrócitos/citologia , Células Precursoras Eritroides/metabolismo , Feminino , Células-Tronco Hematopoéticas/citologia , Humanos , Técnicas In Vitro , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Proteoma , Proteômica/métodos , Fator de Células-Tronco/metabolismo
14.
Blood Adv ; 5(15): 3002-3015, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34351390

RESUMO

Erythropoiesis requires a combination of ubiquitous and tissue-specific transcription factors (TFs). Here, through DNA affinity purification followed by mass spectrometry, we have identified the widely expressed protein MAZ (Myc-associated zinc finger) as a TF that binds to the promoter of the erythroid-specific human α-globin gene. Genome-wide mapping in primary human erythroid cells revealed that MAZ also occupies active promoters as well as GATA1-bound enhancer elements of key erythroid genes. Consistent with an important role during erythropoiesis, knockdown of MAZ reduces α-globin expression in K562 cells and impairs differentiation in primary human erythroid cells. Genetic variants in the MAZ locus are associated with changes in clinically important human erythroid traits. Taken together, these findings reveal the zinc-finger TF MAZ to be a previously unrecognized regulator of the erythroid differentiation program.


Assuntos
Proteínas de Ligação a DNA , Eritropoese , Fatores de Transcrição , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Eritroides/metabolismo , Eritropoese/genética , Regulação da Expressão Gênica , Humanos , Células K562 , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Mol Ther Methods Clin Dev ; 22: 26-39, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34485592

RESUMO

Developing robust methodology for the sustainable production of red blood cells in vitro is essential for providing an alternative source of clinical-quality blood, particularly for individuals with rare blood group phenotypes. Immortalized erythroid progenitor cell lines are the most promising emergent technology for achieving this goal. We previously created the erythroid cell line BEL-A from bone marrow CD34+ cells that had improved differentiation and enucleation potential compared to other lines reported. In this study we show that our immortalization approach is reproducible for erythroid cells differentiated from bone marrow and also from far more accessible peripheral and cord blood CD34+ cells, consistently generating lines with similar improved erythroid performance. Extensive characterization of the lines shows them to accurately recapitulate their primary cell equivalents and provides a molecular signature for immortalization. In addition, we show that only cells at a specific stage of erythropoiesis, predominantly proerythroblasts, are amenable to immortalization. Our methodology provides a step forward in the drive for a sustainable supply of red cells for clinical use and for the generation of model cellular systems for the study of erythropoiesis in health and disease, with the added benefit of an indefinite expansion window for manipulation of molecular targets.

16.
Nat Commun ; 12(1): 6963, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34845225

RESUMO

Within the bone marrow microenvironment, endothelial cells (EC) exert important functions. Arterial EC support hematopoiesis while H-type capillaries induce bone formation. Here, we show that BM sinusoidal EC (BM-SEC) actively control erythropoiesis. Mice with stabilized ß-catenin in BM-SEC (Ctnnb1OE-SEC) generated by using a BM-SEC-restricted Cre mouse line (Stab2-iCreF3) develop fatal anemia. While activation of Wnt-signaling in BM-SEC causes an increase in erythroblast subsets (PII-PIV), mature erythroid cells (PV) are reduced indicating impairment of terminal erythroid differentiation/reticulocyte maturation. Transplantation of Ctnnb1OE-SEC hematopoietic stem cells into wildtype recipients confirms lethal anemia to be caused by cell-extrinsic, endothelial-mediated effects. Ctnnb1OE-SEC BM-SEC reveal aberrant sinusoidal differentiation with altered EC gene expression and perisinusoidal ECM deposition and angiocrine dysregulation with de novo endothelial expression of FGF23 and DKK2, elevated in anemia and involved in vascular stabilization, respectively. Our study demonstrates that BM-SEC play an important role in the bone marrow microenvironment in health and disease.


Assuntos
Anemia/genética , Medula Óssea/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Endotélio Vascular/metabolismo , Eritroblastos/metabolismo , Eritropoese/genética , beta Catenina/genética , Anemia/metabolismo , Anemia/mortalidade , Anemia/patologia , Animais , Medula Óssea/irrigação sanguínea , Capilares/citologia , Capilares/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Diferenciação Celular , Células Endoteliais/classificação , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Eritroblastos/classificação , Eritroblastos/citologia , Feminino , Fator de Crescimento de Fibroblastos 23/genética , Fator de Crescimento de Fibroblastos 23/metabolismo , Regulação da Expressão Gênica , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Integrases/genética , Integrases/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Osteogênese , Reticulócitos/citologia , Reticulócitos/metabolismo , Análise de Sobrevida , Via de Sinalização Wnt , beta Catenina/metabolismo
17.
J Biol Chem ; 284(34): 22703-12, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19542219

RESUMO

Sperm glyceraldehyde-3-phosphate dehydrogenase has been shown to be a successful target for a non-hormonal contraceptive approach, but the agents tested to date have had unacceptable side effects. Obtaining the structure of the sperm-specific isoform to allow rational inhibitor design has therefore been a goal for a number of years but has proved intractable because of the insoluble nature of both native and recombinant protein. We have obtained soluble recombinant sperm glyceraldehyde-3-phosphate dehydrogenase as a heterotetramer with the Escherichia coli glyceraldehyde-3-phosphate dehydrogenase in a ratio of 1:3 and have solved the structure of the heterotetramer which we believe represents a novel strategy for structure determination of an insoluble protein. A structure was also obtained where glyceraldehyde 3-phosphate binds in the P(s) pocket in the active site of the sperm enzyme subunit in the presence of NAD. Modeling and comparison of the structures of human somatic and sperm-specific glyceraldehyde-3-phosphate dehydrogenase revealed few differences at the active site and hence rebut the long presumed structural specificity of 3-chlorolactaldehyde for the sperm isoform. The contraceptive activity of alpha-chlorohydrin and its apparent specificity for the sperm isoform in vivo are likely to be due to differences in metabolism to 3-chlorolactaldehyde in spermatozoa and somatic cells. However, further detailed analysis of the sperm glyceraldehyde-3-phosphate dehydrogenase structure revealed sites in the enzyme that do show significant difference compared with published somatic glyceraldehyde-3-phosphate dehydrogenase structures that could be exploited by structure-based drug design to identify leads for novel male contraceptives.


Assuntos
Anticoncepção , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/química , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Espermatozoides/enzimologia , Sequência de Aminoácidos , Animais , Cromatografia por Troca Iônica , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Proteínas de Escherichia coli/genética , Feminino , Gliceraldeído-3-Fosfato Desidrogenases/genética , Humanos , Masculino , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína
18.
Mol Ther Methods Clin Dev ; 17: 822-830, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32368563

RESUMO

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare autosomal metabolic disorder caused by thymidine phosphorylase (TP) deficiency. Successful therapeutic interventions for this disease rely on a means for efficient and long-lasting circulation of the TP enzyme. In this study we exploit lentiviral transduction of hematopoietic stem cells and an erythroid cell line (BEL-A) to generate reticulocytes that contain active TP. Significant loss of overexpressed TP during erythroid differentiation can be reduced by addition of the ubiquitination inhibitor MG132. However, the ubiquitination sites are located in the substrate binding site in human TP, and their removal abolished enzyme activity. Examination of the TP structure and mechanism suggested that these sites are only exposed in the absence of substrate. We show that supplementation of culture media with thymidine during differentiation reduces enzyme degradation, doubling the amount of TP retained in reticulocytes. This study provides proof of principle that therapeutic reticulocytes expressing TP can be generated in vitro and that ubiquitin-mediated degradation can be subverted through masking ubiquitination sites to ensure retention of human TP in reticulocytes following erythroid differentiation.

19.
Sci Rep ; 10(1): 16798, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033327

RESUMO

The ß-thalassemia syndromes are the most prevalent genetic disorder globally, characterised by reduced or absent ß-globin chain synthesis. HbE/ß-thalassemia is a subtype of ß-thalassemia with extremely high frequency in Asia. Studying molecular defects behind ß-thalassemia is severely impeded by paucity of material from patients and lack of suitable cell lines. Approaches to derive erythroid cells from induced pluripotent stem cells (iPSCs) created from patients are confounded by poor levels of erythroid cell expansion, aberrant or incomplete erythroid differentiation and foetal/embryonic rather than adult globin expression. In this study we generate an immortalised erythroid cell line from peripheral blood stem cells of a HbE/ß-thalassemia patient. Morphological analysis shows the cells are proerythroblasts with some early basophilic erythroblasts, with no change in morphology over time in culture. The line differentiates along the erythroid pathway to orthochromatic erythroblasts and reticulocytes. Importantly, unlike iPSCs, the line maintains the haemoglobin profile of the patient's red blood cells. This is the first human cellular model for ß-thalassemia providing a sustainable source of disease cells for studying underlying disease mechanisms and for use as drug screening platform, particularly for reagents designed to increase foetal haemoglobin expression as we have additionally demonstrated with hydroxyurea.


Assuntos
Diferenciação Celular/fisiologia , Eritroblastos/citologia , Células Eritroides/citologia , Células-Tronco Hematopoéticas/citologia , Talassemia beta/sangue , Linhagem Celular , Humanos
20.
Nat Commun ; 10(1): 3806, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31444345

RESUMO

Investigating the role that host erythrocyte proteins play in malaria infection is hampered by the genetic intractability of this anucleate cell. Here we report that reticulocytes derived through in vitro differentiation of an enucleation-competent immortalized erythroblast cell line (BEL-A) support both successful invasion and intracellular development of the malaria parasite Plasmodium falciparum. Using CRISPR-mediated gene knockout and subsequent complementation, we validate an essential role for the erythrocyte receptor basigin in P. falciparum invasion and demonstrate rescue of invasive susceptibility by receptor re-expression. Successful invasion of reticulocytes complemented with a truncated mutant excludes a functional role for the basigin cytoplasmic domain during invasion. Contrastingly, knockout of cyclophilin B, reported to participate in invasion and interact with basigin, did not impact invasive susceptibility of reticulocytes. These data establish the use of reticulocytes derived from immortalized erythroblasts as a powerful model system to explore hypotheses regarding host receptor requirements for P. falciparum invasion.


Assuntos
Engenharia Genética/métodos , Interações Hospedeiro-Parasita , Malária Falciparum/parasitologia , Plasmodium falciparum/patogenicidade , Reticulócitos/parasitologia , Animais , Basigina/genética , Basigina/metabolismo , Sistemas CRISPR-Cas , Diferenciação Celular , Linhagem Celular , Ciclofilinas/genética , Ciclofilinas/metabolismo , Eritroblastos/fisiologia , Técnicas de Inativação de Genes , Vetores Genéticos/genética , Células HEK293 , Humanos , Lentivirus/genética , Plasmodium falciparum/metabolismo , Domínios Proteicos/genética , Proteínas de Protozoários/metabolismo , Reticulócitos/fisiologia , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA