Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 212(11): 1733-1743, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656392

RESUMO

The thymus is the site of T lymphocyte development and T cell education to recognize foreign, but not self, Ags. B cells also reside and develop in the thymus, although their functions are less clear. During "thymic involution," a process of lymphoid atrophy and adipose replacement linked to sexual maturation, thymocytes decline. However, thymic B cells decrease far less than T cells, such that B cells comprise ∼1% of human neonatal thymocytes but up to ∼10% in adults. All jawed vertebrates possess a thymus, and we and others have shown zebrafish (Danio rerio) also have thymic B cells. In this article, we investigated the precise identities of zebrafish thymic T and B cells and how they change with involution. We assessed the timing and specific details of zebrafish thymic involution using multiple lymphocyte-specific, fluorophore-labeled transgenic lines, quantifying the changes in thymic T- and B-lymphocytes pre- versus postinvolution. Our results prove that, as in humans, zebrafish thymic B cells increase relative to T cells postinvolution. We also performed RNA sequencing on D. rerio thymic and marrow lymphocytes of four novel double-transgenic lines, identifying distinct populations of immature T and B cells. Collectively, this is, to our knowledge, the first comprehensive analysis of zebrafish thymic involution, demonstrating its similarity to human involution and establishing the highly genetically manipulatable zebrafish model as a template for involution studies.


Assuntos
Linfócitos B , Timo , Peixe-Zebra , Animais , Peixe-Zebra/imunologia , Timo/imunologia , Timo/citologia , Linfócitos B/imunologia , Animais Geneticamente Modificados , Linfócitos T/imunologia , Humanos , Diferenciação Celular/imunologia , Modelos Animais
2.
PLoS Pathog ; 19(7): e1011529, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37478143

RESUMO

The genomes of positive-sense RNA viruses encode polyproteins that are essential for mediating viral replication. These viral polyproteins must undergo proteolysis (also termed polyprotein processing) to generate functional protein units. This proteolysis can be performed by virally-encoded proteases as well as host cellular proteases, and is generally believed to be a key step in regulating viral replication. Hepatitis E virus (HEV) is a leading cause of acute viral hepatitis. The positive-sense RNA genome is translated to generate a polyprotein, termed pORF1, which is necessary and sufficient for viral genome replication. However, the mechanism of polyprotein processing in HEV remains to be determined. In this study, we aimed to understand processing of this polyprotein and its role in viral replication using a combination of in vitro translation experiments and HEV sub-genomic replicons. Our data suggest no evidence for a virally-encoded protease or auto-proteolytic activity, as in vitro translation predominantly generates unprocessed viral polyprotein precursors. However, seven cleavage sites within the polyprotein (suggested by bioinformatic analysis) are susceptible to the host cellular protease, thrombin. Using two sub-genomic replicon systems, we demonstrate that mutagenesis of these sites prevents replication, as does pharmacological inhibition of serine proteases including thrombin. Overall, our data supports a model where HEV uses host proteases to support replication and could have evolved to be independent of a virally-encoded protease for polyprotein processing.


Assuntos
Vírus da Hepatite E , Vírus da Hepatite E/genética , Poliproteínas/genética , Poliproteínas/metabolismo , Trombina , Replicação Viral/fisiologia , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Proteínas não Estruturais Virais/metabolismo
3.
Nat Immunol ; 13(8): 737-43, 2012 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-22706339

RESUMO

The innate immune system senses infection by detecting either evolutionarily conserved molecules essential for the survival of microbes or the abnormal location of molecules. Here we demonstrate the existence of a previously unknown innate detection mechanism induced by fusion between viral envelopes and target cells. Virus-cell fusion specifically stimulated a type I interferon response with expression of interferon-stimulated genes, in vivo recruitment of leukocytes and potentiation of signaling via Toll-like receptor 7 (TLR7) and TLR9. The fusion-dependent response was dependent on the stimulator of interferon genes STING but was independent of DNA, RNA and viral capsid. We suggest that membrane fusion is sensed as a danger signal with potential implications for defense against enveloped viruses and various conditions of giant-cell formation.


Assuntos
Fusão Celular , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/fisiologia , Imunidade Inata , Interferon Tipo I/biossíntese , Fusão de Membrana , Proteínas de Membrana/metabolismo , Animais , Quimiocina CXCL10/metabolismo , Células HEK293 , Células HeLa , Humanos , Leucócitos/imunologia , Leucócitos/metabolismo , Ativação Linfocitária , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Internalização do Vírus
4.
J Gen Virol ; 104(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37942835

RESUMO

Hepatitis E virus (HEV) is an emerging pathogen responsible for more than 20 million cases of acute hepatitis globally per annum. Healthy individuals typically have a self-limiting infection, but mortality rates in some populations such as pregnant women can reach 30 %. A detailed understanding of the virus lifecycle is lacking, mainly due to limitations in experimental systems. In this regard, the cyclophilins are an important family of proteins that have peptidyl-prolyl isomerase activity and play roles in the replication of a number of positive-sense RNA viruses, including hepatotropic viruses such as hepatitis C virus (HCV). Cyclophilins A and B (CypA/B) are the two most abundant Cyps in hepatocytes and are therefore potential targets for pan-viral therapeutics. Here, we investigated the importance of CypA and CypB for HEV genome replication using sub-genomic replicons. Using a combination of pharmacological inhibition by cyclosporine A (CsA), and silencing by small hairpin RNA we find that CypA and CypB are not essential for HEV replication. However, we find that silencing of CypB reduces replication of some HEV isolates in some cells. Furthermore, sensitivity to Cyp silencing appears to be partly conferred by the sequence within the hypervariable region of the viral polyprotein. These data suggest HEV is atypical in its requirements for cyclophilin for viral genome replication and that this phenomenon could be genotype- and sequence-specific.


Assuntos
Hepatite C , Vírus da Hepatite E , Gravidez , Feminino , Humanos , Ciclofilinas/genética , Ciclofilinas/metabolismo , Vírus da Hepatite E/genética , Hepacivirus/genética , Ciclosporina/farmacologia , Replicação Viral
5.
J Vet Med Educ ; 49(3): 290-296, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35259084

RESUMO

The sustainability of the traditional university-owned and -operated veterinary teaching hospital has been discussed for many years. Concerns around the shortage and lack of diversity of clinical faculty, financial sustainability, and suitability of secondary and tertiary case load for the development of Doctor of Veterinary Medicine students' Day One Competences are perennial issues. Consequently, many schools have been looking at alternative ways of delivering veterinary clinical education. This article provides a conceptual framework for evaluating the delivery of veterinary clinical education, providing putative advantages and disadvantages of each model for further empirical investigation. Four different models are proposed-owner, third party, embedded distributive, and fully distributive-that can broadly be defined along two dimensions: the degree of integration of the clinical enterprise with the academic enterprise and the degree of authority of the dean/head of school with respect to clinical enterprise governance and their role in budgetary, investment, and hiring decisions. The author offers a typology that may assist deans/heads of schools make strategic decisions about the mode of delivery of veterinary clinical education for their school.


Assuntos
Educação em Veterinária , Animais , Educação em Veterinária/métodos , Hospitais Veterinários , Hospitais de Ensino , Humanos , Instituições Acadêmicas , Faculdades de Medicina Veterinária , Estudantes
6.
Int J Mol Sci ; 20(21)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731471

RESUMO

Despite advancements in the diagnosis and treatment of acute lymphoblastic leukemia (ALL), a need for improved strategies to decrease morbidity and improve cure rates in relapsed/refractory ALL still exists. Such approaches include the identification and implementation of novel targeted combination regimens, and more precise upfront patient risk stratification to guide therapy. New curative strategies rely on an understanding of the pathobiology that derives from systematically dissecting each cancer's genetic and molecular landscape. Zebrafish models provide a powerful system to simulate human diseases, including leukemias and ALL specifically. They are also an invaluable tool for genetic manipulation, in vivo studies, and drug discovery. Here, we highlight and summarize contributions made by several zebrafish T-ALL models and newer zebrafish B-ALL models in translating the underlying genetic and molecular mechanisms operative in ALL, and also highlight their potential utility for drug discovery. These models have laid the groundwork for increasing our understanding of the molecular basis of ALL to further translational and clinical research endeavors that seek to improve outcomes in this important cancer.


Assuntos
Neoplasias Experimentais , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Peixe-Zebra , Animais , Humanos , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
7.
Curr Oncol ; 24(2): e123-e130, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28490935

RESUMO

BACKGROUND: Allogeneic hematopoietic stem-cell transplantation (ahsct) is associated with significant morbidity and mortality, but it can cure carefully selected patients with acute myeloid leukemia (aml) in second remission (cr2). In a cohort of patients with aml who underwent ahsct in cr2, we determined the pre-transplant factors that predicted for overall survival (os), relapse, and non-relapse mortality. We also sought to validate the prognostic risk groups derived by Michelis and colleagues in this independent population. METHODS: In a retrospective chart review, we obtained data for 55 consecutive patients who underwent ahsct for aml in cr2. Hazard ratios were used to describe the independent effects of pre-transplant variables on outcome, and Kaplan-Meier curves were used to assess outcomes in the three prognostic groups identified by Michelis and colleagues. RESULTS: At 1, 3, and 5 years post-transplant, os was 60%, 45.5%, and 37.5% respectively. Statistically significant differences in os, relapse mortality, and non-relapse mortality were not identified between the prognostic risk groups identified by Michelis and colleagues. Women were less likely than men to relapse, and a modified European Society for Blood and Marrow Transplantation (mebmt) score of 3 or less was associated with a lower non-relapse mortality. CONCLUSIONS: The 37.5% 5-year os in this cohort suggests that, compared with other options, ahsct offers patients with aml in cr2 a better chance of cure. Our study supports the use of the mebmt score to predict non-relapse mortality in this population.

8.
Br J Haematol ; 173(4): 582-96, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26969846

RESUMO

Molecular genetic abnormalities are ubiquitous in non-Hodgkin lymphoma (NHL), but genetic changes are not yet used to define specific lymphoma subtypes. Certain recurrent molecular genetic abnormalities in NHL underlie molecular pathogenesis and/or are associated with prognosis or represent potential therapeutic targets. Most molecular genetic studies of B- and T-NHL have been performed on adult patient samples, and the relevance of many of these findings for childhood, adolescent and young adult NHL remains to be demonstrated. In this review, we focus on NHL subtypes that are most common in young patients and emphasize features actually studied in younger NHL patients. This approach highlights what is known about NHL genetics in young patients but also points to gaps that remain, which will require cooperative efforts to collect and share biological specimens for genomic and genetic analyses in order to help predict outcomes and guide therapy in the future.


Assuntos
Linfoma não Hodgkin/genética , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Leucemia de Células B , Leucemia de Células T , Linfoma não Hodgkin/diagnóstico , Linfoma não Hodgkin/terapia , Masculino , Biologia Molecular , Prognóstico , Adulto Jovem
9.
J Virol ; 89(3): 1502-11, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25410861

RESUMO

UNLABELLED: Herpesviruses have a characteristic particle structure comprising an icosahedral capsid, which contains the DNA genome and is, in turn, surrounded by a proteinaceous tegument layer and a lipid envelope. In herpes simplex virus, the interaction between the capsid and tegument is limited to the capsid vertices and involves two minor capsid proteins, pUL17 and pUL25, and the large inner tegument protein pUL36. pUL17 and pUL25 form a heterodimeric structure, the capsid vertex-specific component (CVSC), that lies on top of the peripentonal triplexes, while pUL36 has been reported to connect the CVSC to the penton. In this study, we used virus mutants with deletions in the genes for pUL36 and another inner tegument protein, pUL37, to analyze the contributions of these proteins to CVSC structure. Using electron cryomicroscopy and icosahedral reconstruction of mutants that express pUL17 and pUL25 but not pUL36, we showed that in contrast to accepted models, the CVSC is not formed from pUL17 and pUL25 on their own but requires a contribution from pUL36. In addition, the presence of full-length pUL36 results in weak density that extends the CVSC toward the penton, suggesting either that this extra density is formed directly by pUL36 or that pUL36 stabilizes other components of the vertex-tegument interface. IMPORTANCE: Herpesviruses have complex particles that are formed as a result of a carefully controlled sequence of assembly steps. The nature of the interaction between two of the major particle compartments, the icosahedral capsid and the amorphous tegument, has been extensively studied, but the identity of the interacting proteins and their roles in forming the connections are still unclear. In this study, we used electron microscopy and three-dimensional reconstruction to analyze virus particles formed by mutants that do not express particular interacting proteins. We show that the largest viral protein, pUL36, which occupies the layer of tegument closest to the capsid, is essential for formation of structurally normal connections to the capsid. This demonstrates the importance of pUL36 in the initial stages of tegument addition and provides new insights into the process of virus particle assembly.


Assuntos
Proteínas do Capsídeo/metabolismo , Herpesvirus Humano 1/fisiologia , Proteínas Virais/fisiologia , Montagem de Vírus , Animais , Capsídeo/metabolismo , Linhagem Celular , Microscopia Crioeletrônica , Deleção de Genes , Processamento de Imagem Assistida por Computador , Proteínas Virais/genética
10.
J Virol ; 89(18): 9407-16, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26136572

RESUMO

UNLABELLED: The cellular proteins nectin-1 and herpesvirus entry mediator (HVEM) can both mediate the entry of herpes simplex virus 1 (HSV-1). We have recently shown how these receptors contribute to infection of skin by investigating HSV-1 entry into murine epidermis. Ex vivo infection studies reveal nectin-1 as the primary receptor in epidermis, whereas HVEM has a more limited role. Although the epidermis represents the outermost layer of skin, the contribution of nectin-1 and HVEM in the underlying dermis is still open. Here, we analyzed the role of each receptor during HSV-1 entry in murine dermal fibroblasts that were deficient in expression of either nectin-1 or HVEM or both receptors. Because infection was not prevented by the absence of either nectin-1 or HVEM, we conclude that they can act as alternative receptors. Although HVEM was found to be highly expressed on fibroblasts, entry was delayed in nectin-1-deficient cells, suggesting that nectin-1 acts as the more efficient receptor. In the absence of both receptors, entry was strongly delayed leading to a much reduced viral spread and virus production. These results suggest an unidentified cellular component that acts as alternate but inefficient receptor for HSV-1 on dermal fibroblasts. Characterization of the cellular entry mechanism suggests that HSV-1 can enter dermal fibroblasts both by direct fusion with the plasma membrane and via endocytic vesicles and that this is not dependent on the presence or absence of nectin-1. Entry was also shown to require dynamin and cholesterol, suggesting comparable entry pathways in keratinocytes and dermal fibroblasts. IMPORTANCE: Herpes simplex virus (HSV) is a human pathogen which infects its host via mucosal surfaces or abraded skin. To understand how HSV-1 overcomes the protective barrier of mucosa or skin and reaches its receptors in tissue, it is essential to know which receptors contribute to the entry into individual skin cells. Previously, we have explored the contribution of nectin-1 and herpesvirus entry mediator (HVEM) as receptors for HSV-1 entry into murine epidermis, where keratinocytes form the major cell type. Since the underlying dermis consists primarily of fibroblasts, we have now extended our study of HSV-1 entry to dermal fibroblasts isolated from nectin-1- or HVEM-deficient mice or from mice deficient in both receptors. Our results demonstrate a role for both nectin-1 and HVEM as receptors and suggest a further receptor which appears much less efficient.


Assuntos
Moléculas de Adesão Celular/metabolismo , Fibroblastos/metabolismo , Herpes Simples/metabolismo , Herpesvirus Humano 1/fisiologia , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Internalização do Vírus , Animais , Moléculas de Adesão Celular/genética , Células Cultivadas , Derme/metabolismo , Derme/patologia , Derme/virologia , Epiderme/metabolismo , Epiderme/patologia , Epiderme/virologia , Fibroblastos/patologia , Fibroblastos/virologia , Herpes Simples/genética , Herpes Simples/patologia , Humanos , Camundongos , Camundongos Knockout , Nectinas , Membro 14 de Receptores do Fator de Necrose Tumoral/genética
11.
J Virol ; 89(1): 262-74, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25320325

RESUMO

UNLABELLED: Skin keratinocytes represent a primary entry site for herpes simplex virus 1 (HSV-1) in vivo. The cellular proteins nectin-1 and herpesvirus entry mediator (HVEM) act as efficient receptors for both serotypes of HSV and are sufficient for disease development mediated by HSV-2 in mice. How HSV-1 enters skin and whether both nectin-1 and HVEM are involved are not known. We addressed the impact of nectin-1 during entry of HSV-1 into murine epidermis and investigated the putative contribution of HVEM. Using ex vivo infection of murine epidermis, we showed that HSV-1 entered the basal keratinocytes of the epidermis very efficiently. In nectin-1-deficient epidermis, entry was strongly reduced. Almost no entry was observed, however, in nectin-1-deficient keratinocytes grown in culture. This observation correlated with the presence of HVEM on the keratinocyte surface in epidermis and with the lack of HVEM expression in nectin-1-deficient primary keratinocytes. Our results suggest that nectin-1 is the primary receptor in epidermis, while HVEM has a more limited role. For primary murine keratinocytes, on which nectin-1 acts as a single receptor, electron microscopy suggested that HSV-1 can enter both by direct fusion with the plasma membrane and via endocytic vesicles. Thus, we concluded that nectin-1 directs internalization into keratinocytes via alternative pathways. In summary, HSV-1 entry into epidermis was shown to strongly depend on the presence of nectin-1, but the restricted presence of HVEM can potentially replace nectin-1 as a receptor, illustrating the flexibility employed by HSV-1 to efficiently invade tissue in vivo. IMPORTANCE: Herpes simplex virus (HSV) can cause a range of diseases in humans, from uncomplicated mucocutaneous lesions to life-threatening infections. The skin is one target tissue of HSV, and the question of how the virus overcomes the protective skin barrier and penetrates into the tissue to reach its receptors is still open. Previous studies analyzing entry into cells grown in vitro revealed nectin-1 and HVEM as HSV receptors. To explore the contributions of nectin-1 and HVEM to entry into a natural target tissue, we established an ex vivo infection model. Using nectin-1- or HVEM-deficient mice, we demonstrated the distinct involvement of nectin-1 and HVEM for HSV-1 entry into epidermis and characterized the internalization pathways. Such advances in understanding the involvement of receptors in tissue are essential preconditions for unraveling HSV invasion of skin, which in turn will allow the development of antiviral reagents.


Assuntos
Moléculas de Adesão Celular/metabolismo , Herpesvirus Humano 1/fisiologia , Interações Hospedeiro-Patógeno , Queratinócitos/virologia , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Receptores Virais/metabolismo , Internalização do Vírus , Animais , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Nectinas , Pele/virologia
12.
Br J Haematol ; 170(3): 367-71, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25858645

RESUMO

Patient-specific primers from 10 children/adolescents with Burkitt leukaemia (BL) ± central nervous system disease who were treated with French-British-American/Lymphome Malins de Burkitt 96 C1 plus rituximab were developed from diagnostic blood/bone marrow. Minimal residual disease (MRD) was assessed by real-time polymerase chain reaction at the end of induction (EOI) and consolidation (EOC). Seventy per cent (7/10) and 71% (5/7) were MRD-positive at EOI and EOC, respectively, with no disease recurrences. MRD after induction and consolidation did not predict relapse and subsequent therapy appeared to eliminate MRD. Thus, assessing MRD at a later time point is warranted in future trials to determine its clinical significance.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Linfoma de Burkitt/sangue , Linfoma de Burkitt/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/sangue , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Quimioterapia de Consolidação , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Neoplasia Residual , Projetos Piloto , Reação em Cadeia da Polimerase em Tempo Real
13.
PLoS Pathog ; 9(6): e1003413, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23754946

RESUMO

Influenza viruses exhibit striking variations in particle morphology between strains. Clinical isolates of influenza A virus have been shown to produce long filamentous particles while laboratory-adapted strains are predominantly spherical. However, the role of the filamentous phenotype in the influenza virus infectious cycle remains undetermined. We used cryo-electron tomography to conduct the first three-dimensional study of filamentous virus ultrastructure in particles budding from infected cells. Filaments were often longer than 10 microns and sometimes had bulbous heads at their leading ends, some of which contained tubules we attribute to M1 while none had recognisable ribonucleoprotein (RNP) and hence genome segments. Long filaments that did not have bulbs were infrequently seen to bear an ordered complement of RNPs at their distal ends. Imaging of purified virus also revealed diverse filament morphologies; short rods (bacilliform virions) and longer filaments. Bacilliform virions contained an ordered complement of RNPs while longer filamentous particles were narrower and mostly appeared to lack this feature, but often contained fibrillar material along their entire length. The important ultrastructural differences between these diverse classes of particles raise the possibility of distinct morphogenetic pathways and functions during the infectious process.


Assuntos
Vírus da Influenza A Subtipo H3N2/ultraestrutura , Vírion/ultraestrutura , Animais , Microscopia Crioeletrônica/métodos , Cães , Vírus da Influenza A Subtipo H3N2/fisiologia , Células Madin Darby de Rim Canino , Vírion/fisiologia
14.
PLoS Pathog ; 9(6): e1003461, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23818857

RESUMO

Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pressure to diversify. Therefore, it would be particularly advantageous for CA to evolve genetic robustness. To measure the genetic robustness of HIV-1 CA, we generated a library of single amino acid substitution mutants, encompassing almost half the residues in CA. Strikingly, we found HIV-1 CA to be the most genetically fragile protein that has been analyzed using such an approach, with 70% of mutations yielding replication-defective viruses. Although CA participates in several steps in HIV-1 replication, analysis of conditionally (temperature sensitive) and constitutively non-viable mutants revealed that the biological basis for its genetic fragility was primarily the need to coordinate the accurate and efficient assembly of mature virions. All mutations that exist in naturally occurring HIV-1 subtype B populations at a frequency >3%, and were also present in the mutant library, had fitness levels that were >40% of WT. However, a substantial fraction of mutations with high fitness did not occur in natural populations, suggesting another form of selection pressure limiting variation in vivo. Additionally, known protective CTL epitopes occurred preferentially in domains of the HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. The extreme genetic fragility of HIV-1 CA may be one reason why cell-mediated immune responses to Gag correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies.


Assuntos
Capsídeo/metabolismo , Proteína do Núcleo p24 do HIV/metabolismo , HIV-1/fisiologia , Mutação , Replicação Viral/fisiologia , Linhagem Celular , Feminino , Proteína do Núcleo p24 do HIV/genética , Humanos , Masculino , Estabilidade Proteica , Estrutura Terciária de Proteína
15.
Mol Cancer ; 13: 78, 2014 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-24708840

RESUMO

BACKGROUND: Atypical adenomatous hyperplasia (AAH) and squamous cell dysplasia (SCD) are associated with the development of malignant lesions in the lung. Accurate diagnosis of AAH and SCD could facilitate earlier clinical intervention and provide useful information for assessing lung cancer risk in human populations. Detection of AAH and SCD has been achieved by imaging and bronchoscopy clinically, but sensitivity and specificity remain less than satisfactory. We utilized the ability of the immune system to identify lesion specific proteins for detection of AAH and SCD. METHODS: AAH and SCD tissue was surgically removed from six patients of Chinese descent (3 AAH and 3 SCD) with corresponding serum samples. Total RNA was extracted from the tissues and a cDNA library was generated and incorporated into a T7 bacteriophage vector. Following enrichment to remove "normal" reactive phages, a total of 200 AAH related and 200 SCD related phage clones were chosen for statistical classifier development and incorporation into a microarray. Microarray slides were tested with an independent double-blinded population consisting of 100 AAH subjects, 100 SCD subjects and 200 healthy control subjects. RESULTS: Sensitivity of 82% and specificity of 70% were achieved in the detection of AAH using a combination of 9 autoantibody biomarkers. Likewise, 86% sensitivity and 78% specificity were achieved in the detection of SCD using a combination of 13 SCD-associated markers. Sequencing analysis identified that most of these 22 autoantibody biomarkers had known malignant associations. CONCLUSIONS: Both diagnostic values showed promising sensitivity and specificity in detection of pre-neoplastic lung lesions. Hence, this technology could be a useful non-invasive tool to assess lung cancer risk in human populations.


Assuntos
Autoanticorpos , Hiperplasia/diagnóstico , Neoplasias Pulmonares/diagnóstico , Lesões Pré-Cancerosas/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Detecção Precoce de Câncer , Feminino , Humanos , Hiperplasia/imunologia , Hiperplasia/patologia , Pulmão/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Lesões Pré-Cancerosas/patologia
17.
J Virol ; 87(12): 7102-12, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23596303

RESUMO

Efficient intracellular transport of the capsid of alphaherpesviruses, such as herpes simplex virus 1 (HSV-1), is known to be dependent upon the microtubule (MT) network. Typically, the MT network radiates from an MT-organizing center (MTOC), which is, in most cases, the centrosome. During herpesvirus egress, it has been assumed that capsids travel first from the nucleus to the centrosome and then from the centrosome to the site of envelopment. Here we report that the centrosome is no longer a primary MTOC in HSV-1-infected cells, but it retains this function in cells infected by another alphaherpesvirus, pseudorabies virus (PrV). As a result, MTs formed at late times after infection with PrV grow from a major, centralized MTOC, while those formed after HSV-1 infection arise from dispersed locations in the cytoplasm, indicating the presence of alternative and minor MTOCs. Thus, loss of the principal MT nucleating center in cells following HSV-1 infection raises questions about the mechanism of HSV-1 capsid egress. It is possible that, rather than passing via the centrosome, capsids may travel directly to the site of envelopment after exiting the nucleus. We suggest that, in HSV-1-infected cells, the disruption of centrosomal functions triggers reorganization of the MT network to favor noncentrosomal MTs and promote efficient viral spread.


Assuntos
Centrossomo/metabolismo , Centrossomo/virologia , Herpesvirus Humano 1/patogenicidade , Herpesvirus Suídeo 1/patogenicidade , Animais , Capsídeo/metabolismo , Linhagem Celular , Chlorocebus aethiops , Fibroblastos/virologia , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Herpesvirus Suídeo 1/fisiologia , Humanos , Microtúbulos/metabolismo , Microtúbulos/virologia , Pseudorraiva/virologia , Células Vero
18.
J Virol ; 87(5): 2857-67, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23269794

RESUMO

Herpes simplex virus 1 (HSV-1) is a neurotropic virus that travels long distances through cells using the microtubule network. Its 125-nm-diameter capsid is a large cargo which efficiently recruits molecular motors for movement. Upon entry, capsids reach the centrosome by minus-end-directed transport. From there, they are believed to reach the nucleus by plus-end-directed transport. Plus-end-directed transport is also important during egress, when capsids leave the nucleus to reach the site of envelopment in the cytoplasm. Although capsid interactions with dynein and kinesins have been described in vitro, the actual composition of the cellular machinery recruited by herpesviruses for capsid transport in infected cells remains unknown. Here, we identify the spectraplakin protein, dystonin/BPAG1, an important cytoskeleton cross-linker involved in microtubule-based transport, as a binding partner of the HSV-1 protein pUL37, which has been implicated in capsid transport. Viral replication is delayed in dystonin-depleted cells, and, using video microscopy of living infected cells, we show that dystonin depletion strongly inhibits capsid movement in the cytoplasm during egress. This study provides new insights into the cellular requirements for HSV-1 capsid transport and identifies dystonin as a nonmotor protein part of the transport machinery.


Assuntos
Capsídeo/fisiologia , Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto/metabolismo , Herpesvirus Humano 1/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Estruturais Virais/metabolismo , Animais , Proteínas do Capsídeo/metabolismo , Proteínas de Transporte/genética , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Proteínas do Citoesqueleto/genética , Distonina , Células HEK293 , Herpes Simples/metabolismo , Humanos , Microtúbulos/virologia , Proteínas do Tecido Nervoso/genética , Estrutura Terciária de Proteína , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno , Células Vero , Liberação de Vírus , Replicação Viral
19.
J Virol ; 87(20): 11008-18, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23903849

RESUMO

During infection by herpes simplex virus 1 (HSV-1), the viral capsid is transported around the cytoplasm along the microtubule (MT) network. Although molecular motors have been implicated in this process, the composition of the molecular machinery required for efficient directional transport is unknown. We previously showed that dystonin (BPAG1) is recruited to HSV-1 capsids by the capsid-bound tegument protein pUL37 to promote efficient cytoplasmic transport of capsids during egress. Dystonin is a cytoskeleton cross-linker which localizes at MT plus ends and has roles in retrograde and anterograde transport in neurons. In this study, we investigated the role of dystonin during the entry stages of HSV-1 infection. Because of the way in which the MT network is organized, capsids are required to change their direction of motion along the MTs as they travel from the point of entry to the nucleus, where replication takes place. Thus, capsids first travel to the centrosome (the principal microtubule organizing center) by minus-end-directed transport and then switch polarity and travel to the nucleus by plus-end-directed transport. We observed that transport of capsids toward the centrosome was slowed, but not blocked, by dystonin depletion. However, transport of capsids away from the centrosome was significantly impaired, causing them to accumulate in the vicinity of the centrosome and reducing the numbers reaching the nucleus. We conclude that, during entry of HSV-1, dystonin has a specific role in plus-ended transport of capsids from the centrosome to the nucleus.


Assuntos
Capsídeo/metabolismo , Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto/metabolismo , Herpesvirus Humano 1/fisiologia , Interações Hospedeiro-Patógeno , Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Distonina , Humanos
20.
PLoS Pathog ; 8(10): e1002961, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23055933

RESUMO

Herpes viruses are prevalent and well characterized human pathogens. Despite extensive study, much remains to be learned about the structure of the genome packaging and release machinery in the capsids of these large and complex double-stranded DNA viruses. However, such machinery is well characterized in tailed bacteriophage, which share a common evolutionary origin with herpesvirus. In tailed bacteriophage, the genome exits from the virus particle through a portal and is transferred into the host cell by a complex apparatus (i.e. the tail) located at the portal vertex. Here we use electron cryo-tomography of human herpes simplex type-1 (HSV-1) virions to reveal a previously unsuspected feature at the portal vertex, which extends across the HSV-1 tegument layer to form a connection between the capsid and the viral membrane. The location of this assembly suggests that it plays a role in genome release into the nucleus and is also important for virion architecture.


Assuntos
Capsídeo/metabolismo , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/ultraestrutura , Vírion/ultraestrutura , Internalização do Vírus , Animais , Bacteriófagos , Capsídeo/química , Cricetinae , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Herpesvirus Humano 1/metabolismo , Humanos , Vírion/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA