RESUMO
In 1994, two independent groups extracted DNA from several Pleistocene epoch mammoths and noted differences among individual specimens. Subsequently, DNA sequences have been published for a number of extinct species. However, such ancient DNA is often fragmented and damaged, and studies to date have typically focused on short mitochondrial sequences, never yielding more than a fraction of a per cent of any nuclear genome. Here we describe 4.17 billion bases (Gb) of sequence from several mammoth specimens, 3.3 billion (80%) of which are from the woolly mammoth (Mammuthus primigenius) genome and thus comprise an extensive set of genome-wide sequence from an extinct species. Our data support earlier reports that elephantid genomes exceed 4 Gb. The estimated divergence rate between mammoth and African elephant is half of that between human and chimpanzee. The observed number of nucleotide differences between two particular mammoths was approximately one-eighth of that between one of them and the African elephant, corresponding to a separation between the mammoths of 1.5-2.0 Myr. The estimated probability that orthologous elephant and mammoth amino acids differ is 0.002, corresponding to about one residue per protein. Differences were discovered between mammoth and African elephant in amino-acid positions that are otherwise invariant over several billion years of combined mammalian evolution. This study shows that nuclear genome sequencing of extinct species can reveal population differences not evident from the fossil record, and perhaps even discover genetic factors that affect extinction.
Assuntos
Núcleo Celular/genética , Elefantes/genética , Evolução Molecular , Extinção Biológica , Fósseis , Genoma/genética , Genômica , Análise de Sequência de DNA/métodos , África , Animais , Sequência Conservada/genética , Elefantes/anatomia & histologia , Feminino , Cabelo/metabolismo , Humanos , Índia , Masculino , FilogeniaRESUMO
Metastatic castration-resistant prostate cancer (mCRPC) is a lethal disease, and molecular markers that differentiate indolent from aggressive subtypes are needed. We sequenced the exomes of five metastatic tumors and healthy kidney tissue from an index case with mCRPC to identify lesions associated with disease progression and metastasis. An Ashkenazi Jewish (AJ) germline founder mutation, del185AG in BRCA1, was observed and AJ ancestry was confirmed. Sixty-two somatic variants altered proteins in tumors, including cancer-associated genes, TMPRSS2-ERG, PBRM1, and TET2. The majority (n = 53) of somatic variants were present in all metastases and only a subset (n = 31) was observed in the primary tumor. Integrating tumor next-generation sequencing and DNA copy number showed somatic loss of BRCA1 and TMPRSS2-ERG. We sequenced 19 genes with deleterious mutations in the index case in additional mCRPC samples and detected a frameshift, two somatic missense alterations, tumor loss of heterozygosity, and combinations of germline missense SNPs in TET2. In summary, genetic analysis of metastases from an index case permitted us to infer a chronology for the clonal spread of disease based on sequential accrual of somatic lesions. The role of TET2 in mCRPC deserves additional analysis and may define a subset of metastatic disease.
Assuntos
Proteínas de Ligação a DNA/genética , Genes BRCA1 , Metástase Neoplásica/genética , Proteínas Nucleares/genética , Proteínas de Fusão Oncogênica/genética , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição/genética , Idoso , Sequência de Aminoácidos , Dioxigenases , Mutação da Fase de Leitura , Mutação em Linhagem Germinativa , Humanos , Perda de Heterozigosidade , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Metástase Neoplásica/patologia , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNARESUMO
BACKGROUND: The revolution in DNA sequencing technology continues unabated, and is affecting all aspects of the biological and medical sciences. The training and recruitment of the next generation of researchers who are able to use and exploit the new technology is severely lacking and potentially negatively influencing research and development efforts to advance genome biology. Here we present a cross-disciplinary course that provides undergraduate students with practical experience in running a next generation sequencing instrument through to the analysis and annotation of the generated DNA sequences. RESULTS: Many labs across world are installing next generation sequencing technology and we show that the undergraduate students produce quality sequence data and were excited to participate in cutting edge research. The students conducted the work flow from DNA extraction, library preparation, running the sequencing instrument, to the extraction and analysis of the data. They sequenced microbes, metagenomes, and a marine mammal, the Californian sea lion, Zalophus californianus. The students met sequencing quality controls, had no detectable contamination in the targeted DNA sequences, provided publication quality data, and became part of an international collaboration to investigate carcinomas in carnivores. CONCLUSIONS: Students learned important skills for their future education and career opportunities, and a perceived increase in students' ability to conduct independent scientific research was measured. DNA sequencing is rapidly expanding in the life sciences. Teaching undergraduates to use the latest technology to sequence genomic DNA ensures they are ready to meet the challenges of the genomic era and allows them to participate in annotating the tree of life.
Assuntos
Currículo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica/educação , Análise de Sequência de DNA/métodos , Animais , Genoma Bacteriano , Metagenômica/métodos , Controle de Qualidade , Leões-Marinhos/genética , Estudantes , Ensino , UniversidadesRESUMO
We describe methods for rapid sequencing of the entire human mitochondrial genome (mtgenome), which involve long-range PCR for specific amplification of the mtgenome, pyrosequencing, quantitative mapping of sequence reads to identify sequence variants and heteroplasmy, as well as de novo sequence assembly. These methods have been used to study 40 publicly available HapMap samples of European (CEU) and African (YRI) ancestry to demonstrate a sequencing error rate <5.63×10(-4), nucleotide diversity of 1.6×10(-3) for CEU and 3.7×10(-3) for YRI, patterns of sequence variation consistent with earlier studies, but a higher rate of heteroplasmy varying between 10% and 50%. These results demonstrate that next-generation sequencing technologies allow interrogation of the mitochondrial genome in greater depth than previously possible which may be of value in biology and medicine.
Assuntos
DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Genômica/métodos , Análise de Sequência de DNA/métodos , População Negra/genética , Bases de Dados Genéticas , Variação Genética , Projeto HapMap , Humanos , Reação em Cadeia da Polimerase , Alinhamento de Sequência , População Branca/genéticaRESUMO
We report five new complete mitochondrial DNA (mtDNA) genomes of Siberian woolly mammoth (Mammuthus primigenius), sequenced with up to 73-fold coverage from DNA extracted from hair shaft material. Three of the sequences present the first complete mtDNA genomes of mammoth clade II. Analysis of these and 13 recently published mtDNA genomes demonstrates the existence of two apparently sympatric mtDNA clades that exhibit high interclade divergence. The analytical power afforded by the analysis of the complete mtDNA genomes reveals a surprisingly ancient coalescence age of the two clades, approximately 1-2 million years, depending on the calibration technique. Furthermore, statistical analysis of the temporal distribution of the (14)C ages of these and previously identified members of the two mammoth clades suggests that clade II went extinct before clade I. Modeling of protein structures failed to indicate any important functional difference between genomes belonging to the two clades, suggesting that the loss of clade II more likely is due to genetic drift than a selective sweep.
Assuntos
Elefantes/classificação , Elefantes/genética , Genoma Mitocondrial , Paleontologia , Filogenia , Animais , Sequência de Bases , DNA Mitocondrial/análise , DNA Mitocondrial/genética , Variação Genética , Cabelo/química , Dados de Sequência Molecular , Análise de Sequência de DNARESUMO
ABSTRACT: NPs commonly prescribe pharmaceutical therapies such as opiates, antidepressants, and/or other analgesics to improve the health and well-being of patients experiencing chronic pain. This article provides NPs with pharmacogenetic testing knowledge, such as readiness for clinical implementation, considerations for choosing a testing service, and testing costs for chronic pain management.
Assuntos
Dor Crônica , Farmacogenética , Analgésicos Opioides/uso terapêutico , Dor Crônica/tratamento farmacológico , Humanos , Manejo da Dor , Testes FarmacogenômicosRESUMO
Chronic pain is a common and costly healthcare problem where standard of care often involves the use of opioids and patient response varies widely. Designing a treatment plan based upon an individual's genetic signature provides an individualized patient-centered care approach that can improve functional status, quality of life, and reduce adverse drug events (ADEs). This paper will discuss the ethical implications of pharmacogenetic (PGx) testing using the principlism framework of the four moral principles: beneficence, non-maleficence, autonomy, and justice. Beneficence involves balancing the benefits and risks associated with PGx testing. Non-maleficence is the directive to do no harm to the patient in the delivery or use of PGx test results. Autonomy encompasses self-determination; the patient's right to select PGx testing. Justice is concerned with distributing benefits and burdens of PGx testing access and costs. Maximizing patient autonomy and beneficence during treatment promotes patient-centered care. Principlism supports PGx testing for patients experiencing chronic pain. Integrating PGx testing impact treatment plans and may improve the outlook for patients with chronic pain.
Assuntos
Dor Crônica/tratamento farmacológico , Dor Crônica/genética , Farmacogenética/ética , Beneficência , Ética Médica , Humanos , Autonomia Pessoal , Ética Baseada em Princípios , Qualidade de Vida , Justiça SocialRESUMO
Recently, genome-wide association studies have identified loci across a segment of chromosome 8q24 (128,100,000-128,700,000) associated with the risk of breast, colon and prostate cancers. At least three regions of 8q24 have been independently associated with prostate cancer risk; the most centromeric of which appears to be population specific. Haplotypes in two contiguous but independent loci, marked by rs6983267 and rs1447295, have been identified in the Cancer Genetic Markers of Susceptibility project ( http://cgems.cancer.gov ), which genotyped more than 5,000 prostate cancer cases and 5,000 controls of European origin. The rs6983267 locus is also strongly associated with colorectal cancer. To ascertain a comprehensive catalog of common single-nucleotide polymorphisms (SNPs) across the two regions, we conducted a resequence analysis of 136 kb (chr8: 128,473,000-128,609,802) using the Roche/454 next-generation sequencing technology in 39 prostate cancer cases and 40 controls of European origin. We have characterized a comprehensive catalog of common (MAF > 1%) SNPs within this region, including 442 novel SNPs and have determined the pattern of linkage disequilibrium across the region. Our study has generated a detailed map of genetic variation across the region, which should be useful for choosing SNPs for fine mapping of association signals in 8q24 and investigations of the functional consequences of select common variants.
Assuntos
Cromossomos Humanos Par 8 , Neoplasias do Colo/genética , Neoplasias da Próstata/genética , Estudos de Casos e Controles , Feminino , Frequência do Gene , Humanos , Desequilíbrio de Ligação , Masculino , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodosRESUMO
Cultivated citrus are selections from, or hybrids of, wild progenitor species whose identities and contributions to citrus domestication remain controversial. Here we sequence and compare citrus genomes--a high-quality reference haploid clementine genome and mandarin, pummelo, sweet-orange and sour-orange genomes--and show that cultivated types derive from two progenitor species. Although cultivated pummelos represent selections from one progenitor species, Citrus maxima, cultivated mandarins are introgressions of C. maxima into the ancestral mandarin species Citrus reticulata. The most widely cultivated citrus, sweet orange, is the offspring of previously admixed individuals, but sour orange is an F1 hybrid of pure C. maxima and C. reticulata parents, thus implying that wild mandarins were part of the early breeding germplasm. A Chinese wild 'mandarin' diverges substantially from C. reticulata, thus suggesting the possibility of other unrecognized wild citrus species. Understanding citrus phylogeny through genome analysis clarifies taxonomic relationships and facilitates sequence-directed genetic improvement.
Assuntos
Cruzamento , Citrus/classificação , Citrus/genética , Sequência Conservada/genética , Produtos Agrícolas/genética , Variação Genética/genética , Genoma de Planta/genética , Sequência de Bases , Evolução Molecular , Dados de Sequência Molecular , Análise de Sequência de DNA , Especificidade da EspécieRESUMO
Although the application of sequencing-by-synthesis techniques to DNA extracted from bones has revolutionized the study of ancient DNA, it has been plagued by large fractions of contaminating environmental DNA. The genetic analyses of hair shafts could be a solution: We present 10 previously unexamined Siberian mammoth (Mammuthus primigenius) mitochondrial genomes, sequenced with up to 48-fold coverage. The observed levels of damage-derived sequencing errors were lower than those observed in previously published frozen bone samples, even though one of the specimens was >50,000 14C years old and another had been stored for 200 years at room temperature. The method therefore sets the stage for molecular-genetic analysis of museum collections.