Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Blood ; 119(20): 4752-61, 2012 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-22262761

RESUMO

Tissue-type plasminogen activator (t-PA) can modulate permeability of the neurovascular unit and exacerbate injury in ischemic stroke. We examined the effects of t-PA using in vitro models of the blood-brain barrier. t-PA caused a concentration-dependent increase in permeability. This effect was dependent on plasmin formation and potentiated in the presence of plasminogen. An inactive t-PA variant inhibited the t-PA-mediated increase in permeability, whereas blockade of low-density lipoprotein receptors or exposed lysine residues resulted in similar inhibition, implying a role for both a t-PA receptor, most likely a low-density lipoprotein receptor, and a plasminogen receptor. This effect was selective to t-PA and its close derivative tenecteplase. The truncated t-PA variant reteplase had a minor effect on permeability, whereas urokinase and desmoteplase were ineffective. t-PA also induced marked shape changes in both brain endothelial cells and astrocytes. Changes in astrocyte morphology coincided with increased F-actin staining intensity, larger focal adhesion size, and elevated levels of phosphorylated myosin. Inhibition of Rho kinase blocked these changes and reduced t-PA/plasminogen-mediated increase in permeability. Hence plasmin, generated on the cell surface selectively by t-PA, modulates the astrocytic cytoskeleton, leading to an increase in blood-brain barrier permeability. Blockade of the Rho/Rho kinase pathway may have beneficial consequences during thrombolytic therapy.


Assuntos
Astrócitos/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Fibrinolisina/farmacologia , Ativador de Plasminogênio Tecidual/farmacologia , Quinases Associadas a rho/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/fisiologia , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/fisiologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Fibrinolisina/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Teóricos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
2.
Brain ; 135(Pt 11): 3251-64, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22822039

RESUMO

The neurovascular unit provides a dynamic interface between the circulation and central nervous system. Disruption of neurovascular integrity occurs in numerous brain pathologies including neurotrauma and ischaemic stroke. Tissue plasminogen activator is a serine protease that converts plasminogen to plasmin, a protease that dissolves blood clots. Besides its role in fibrinolysis, tissue plasminogen activator is abundantly expressed in the brain where it mediates extracellular proteolysis. However, proteolytically active tissue plasminogen activator also promotes neurovascular disruption after ischaemic stroke; the molecular mechanisms of this process are still unclear. Tissue plasminogen activator is naturally inhibited by serine protease inhibitors (serpins): plasminogen activator inhibitor-1, neuroserpin or protease nexin-1 that results in the formation of serpin:protease complexes. Proteases and serpin:protease complexes are cleared through high-affinity binding to low-density lipoprotein receptors, but their binding to these receptors can also transmit extracellular signals across the plasma membrane. The matrix metalloproteinases are the second major proteolytic system in the mammalian brain, and like tissue plasminogen activators are pivotal to neurological function but can also degrade structures of the neurovascular unit after injury. Herein, we show that tissue plasminogen activator potentiates neurovascular damage in a dose-dependent manner in a mouse model of neurotrauma. Surprisingly, inhibition of activity following administration of plasminogen activator inhibitor-1 significantly increased cerebrovascular permeability. This led to our finding that formation of complexes between tissue plasminogen activator and plasminogen activator inhibitor-1 in the brain parenchyma facilitates post-traumatic cerebrovascular damage. We demonstrate that following trauma, the complex binds to low-density lipoprotein receptors, triggering the induction of matrix metalloproteinase-3. Accordingly, pharmacological inhibition of matrix metalloproteinase-3 attenuates neurovascular permeability and improves neurological function in injured mice. Our results are clinically relevant, because concentrations of tissue plasminogen activator: plasminogen activator inhibitor-1 complex and matrix metalloproteinase-3 are significantly elevated in cerebrospinal fluid of trauma patients and correlate with neurological outcome. In a separate study, we found that matrix metalloproteinase-3 and albumin, a marker of cerebrovascular damage, were significantly increased in brain tissue of patients with neurotrauma. Perturbation of neurovascular homeostasis causing oedema, inflammation and cell death is an important cause of acute and long-term neurological dysfunction after trauma. A role for the tissue plasminogen activator-matrix metalloproteinase axis in promoting neurovascular disruption after neurotrauma has not been described thus far. Targeting tissue plasminogen activator: plasminogen activator inhibitor-1 complex signalling or downstream matrix metalloproteinase-3 induction may provide viable therapeutic strategies to reduce cerebrovascular permeability after neurotrauma.


Assuntos
Lesões Encefálicas/fisiopatologia , Permeabilidade Capilar/fisiologia , Inibidor 1 de Ativador de Plasminogênio/fisiologia , Ativador de Plasminogênio Tecidual/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Albuminas/metabolismo , Animais , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Lesões Encefálicas/líquido cefalorraquidiano , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Injeções Intraventriculares , Masculino , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Inibidor 1 de Ativador de Plasminogênio/administração & dosagem , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Recuperação de Função Fisiológica/fisiologia , Ativador de Plasminogênio Tecidual/administração & dosagem , Ativador de Plasminogênio Tecidual/antagonistas & inibidores , Ativador de Plasminogênio Tecidual/metabolismo
3.
PLoS One ; 10(7): e0131216, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26132730

RESUMO

Removal of dead cells in the absence of concomitant immune stimulation is essential for tissue homeostasis. We recently identified an injury-induced protein misfolding event that orchestrates the plasmin-dependent proteolytic degradation of necrotic cells. As impaired clearance of dead cells by the innate immune system predisposes to autoimmunity, we determined whether plasmin could influence endocytosis and immune cell stimulation by dendritic cells - a critical cell that links the innate and adaptive immune systems. We find that plasmin generated on the surface of necrotic cells enhances their phagocytic removal by human monocyte-derived dendritic cells. Plasmin also promoted phagocytosis of protease-resistant microparticles by diverse mouse dendritic cell sub-types both in vitro and in vivo. Together with an increased phagocytic capacity, plasmin-treated dendritic cells maintain an immature phenotype, exhibit reduced migration to lymph nodes, increase their expression/release of the immunosuppressive cytokine TGF-ß, and lose their capacity to mount an allogeneic response. Collectively, our findings support a novel role for plasmin formed on dead cells and other phagocytic targets in maintaining tissue homeostasis by increasing the phagocytic function of dendritic cells while simultaneously decreasing their immunostimulatory capacity consistent with producing an immunosuppressive state.


Assuntos
Células Dendríticas/fisiologia , Fibrinolisina/fisiologia , Imunidade Inata/fisiologia , Fagocitose/fisiologia , Imunidade Adaptativa/fisiologia , Animais , Células Cultivadas , Citometria de Fluxo , Humanos , Ativação Linfocitária/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão , Fator de Crescimento Transformador beta/fisiologia
4.
Brain Res ; 1565: 63-73, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24675027

RESUMO

Tissue-type plasminogen activator (t-PA) is the only thrombolytic treatment available for patients with acute ischaemic stroke. However, t-PA can increase permeability of the blood-brain barrier (BBB). Desmoteplase is a plasminogen activator derived from the common vampire bat, currently under clinical development for ischaemic stroke. We compared how t-PA and desmoteplase influenced BBB permeability using a human in vitro model where primary brain endothelial cells (BEC) and astrocytes are co-cultured on the opposite sides of a porous membrane. Permeability changes were evaluated 6 or 24h post-stimulation by passage of fluorescent albumin across the membrane. Under normoxic conditions, t-PA, but not desmoteplase, increased BBB permeability. Surprisingly, the ability of t-PA to affect the barrier was lost under conditions of oxygen-glucose deprivation (OGD). Addition of plasminogen re-sensitised the BBB to the action of t-PA under both normoxia and OGD, but did not affect the inert behaviour of desmoteplase, even when digested fibrinogen was added to ensure optimal plasmin generation. These observations coincided with plasmin-dependent changes in astrocyte and BEC morphology and disruption of tight junction proteins in BECs, specifically initiated by t-PA but not by desmoteplase. Finally, inhibition of plasmin post-stimulation with t-PA and plasminogen, especially within 2h, protected the BBB against t-PA-mediated barrier opening. Hence t-PA, but not desmoteplase, increases BBB permeability under both normoxic and OGD conditions in a reversible, plasmin-dependent process. The inability of desmoteplase to increase permeability despite its capacity to generate plasmin provides further support for its use as thrombolytic in patients with ischaemic stroke.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Fibrinolíticos/farmacologia , Ativadores de Plasminogênio/farmacologia , Plasminogênio/farmacologia , Ativador de Plasminogênio Tecidual/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Glucose/metabolismo , Humanos , Oxigênio/metabolismo , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA