Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

País/Região como assunto
País de afiliação
Intervalo de ano de publicação
1.
J Neuroinflammation ; 20(1): 61, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36882750

RESUMO

Zika virus (ZIKV) infection is a global public health concern linked to adult neurological disorders and congenital diseases in newborns. Host lipid metabolism, including lipid droplet (LD) biogenesis, has been associated with viral replication and pathogenesis of different viruses. However, the mechanisms of LD formation and their roles in ZIKV infection in neural cells are still unclear. Here, we demonstrate that ZIKV regulates the expression of pathways associated with lipid metabolism, including the upregulation and activation of lipogenesis-associated transcription factors and decreased expression of lipolysis-associated proteins, leading to significant LD accumulation in human neuroblastoma SH-SY5Y cells and in neural stem cells (NSCs). Pharmacological inhibition of DGAT-1 decreased LD accumulation and ZIKV replication in vitro in human cells and in an in vivo mouse model of infection. In accordance with the role of LDs in the regulation of inflammation and innate immunity, we show that blocking LD formation has major roles in inflammatory cytokine production in the brain. Moreover, we observed that inhibition of DGAT-1 inhibited the weight loss and mortality induced by ZIKV infection in vivo. Our results reveal that LD biogenesis triggered by ZIKV infection is a crucial step for ZIKV replication and pathogenesis in neural cells. Therefore, targeting lipid metabolism and LD biogenesis may represent potential strategies for anti-ZIKV treatment development.


Assuntos
Neuroblastoma , Infecção por Zika virus , Zika virus , Animais , Humanos , Camundongos , Gotículas Lipídicas , Replicação Viral
2.
Molecules ; 28(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36677684

RESUMO

In the context of a biorefinery, lignocellulosic materials represent an important source of raw material for the bioconversion of cellulose, hemicellulose, and lignin into value-added products, such as xylose for fermentation, oligosaccharides, and bioplastics for packaging. Among the most abundant lignocellulosic materials in Brazil, sugarcane bagasse biomass stands out, as it is rich in cellulose and hemicellulose. In this context, through an experimental design, this study developed a robust enzyme cocktail containing xylanases and accessory enzymes to complete the hydrolysis of xylan from sugarcane bagasse, obtaining a low xylose yield and concentration (9% and 1.8 g/L, respectively, observed in experiment number 16 from the complete hydrolysis of a xylan assay), a fermentable sugar that is important in the production of second-generation ethanol, and a high xylooligosaccharides (XOS) yield and concentration (93.1% and 19.6 g/L, respectively, obtained from a xylooligosaccharides production assay); in general, xylan has prebiotic activities that favor an improvement in intestinal functions, with immunological and antimicrobial actions and other benefits to human health. In addition to completely hydrolyzing the sugarcane bagasse xylan, this enzymatic cocktail has great potential to be applied in other sources of lignocellulosic biomass for the conversion of xylan into xylose and XOS due to its enzymes content, involving both main chain and pendant groups hydrolysis of hemicelluloses.


Assuntos
Celulose , Saccharum , Humanos , Xilanos , Xilose , Hidrólise , Oligossacarídeos , Glucuronatos
3.
PLoS Pathog ; 16(12): e1009127, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33326472

RESUMO

Viruses are obligate intracellular parasites that make use of the host metabolic machineries to meet their biosynthetic needs. Thus, identifying the host pathways essential for the virus replication may lead to potential targets for therapeutic intervention. The mechanisms and pathways explored by SARS-CoV-2 to support its replication within host cells are not fully known. Lipid droplets (LD) are organelles with major functions in lipid metabolism, energy homeostasis and intracellular transport, and have multiple roles in infections and inflammation. Here we described that monocytes from COVID-19 patients have an increased LD accumulation compared to SARS-CoV-2 negative donors. In vitro, SARS-CoV-2 infection were seen to modulate pathways of lipid synthesis and uptake as monitored by testing for CD36, SREBP-1, PPARγ, and DGAT-1 expression in monocytes and triggered LD formation in different human cell lines. LDs were found in close apposition with SARS-CoV-2 proteins and double-stranded (ds)-RNA in infected Vero cells. Electron microscopy (EM) analysis of SARS-CoV-2 infected Vero cells show viral particles colocalizing with LDs, suggestive that LDs might serve as an assembly platform. Pharmacological modulation of LD formation by inhibition of DGAT-1 with A922500 significantly inhibited SARS-CoV-2 replication as well as reduced production of mediators pro-inflammatory response. Taken together, we demonstrate the essential role of lipid metabolic reprograming and LD formation in SARS-CoV-2 replication and pathogenesis, opening new opportunities for therapeutic strategies to COVID-19.


Assuntos
COVID-19/complicações , Mediadores da Inflamação/metabolismo , Inflamação/etiologia , Gotículas Lipídicas/patologia , SARS-CoV-2/isolamento & purificação , Animais , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Estudos de Casos e Controles , Chlorocebus aethiops , Humanos , Inflamação/metabolismo , Inflamação/patologia , Células Vero , Replicação Viral
4.
Nutr Cancer ; 74(4): 1279-1290, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34278905

RESUMO

Nutritional support strongly influence the nutritional status of the surgical neoplastic patients. This study aimed to evaluate the influence of food consumption on the perioperative nutritional status of hospitalized patients with neoplasia of the upper (UGIT) and lower (LGIT) gastrointestinal tract. METHOD: Observational, longitudinal, and prospective study. Data collected: food consumption, Subjective Global Assessment, anthropometry, laboratory tests. RESULTS: Eighty patients were followed up: 43 (54%) in the UGIT and 37 (46%) in the LGIT. The consumption in the perioperative period was lower than the usual consumption in the UGIT and LGIT groups, respectively, of energy (14.2 ± 6.5; 22.8 ± 11.2 Kcal/kg/d, p < 0.001; 13.6 ± 1.2; 19.0 ± 2.0 Kcal/kg/d; p = 0.014), protein (1.1 ± 0.7; 0.6 ± 0.3 g/kg/d, p < 0.001; 0.8 ± 0.1; 0.5 ± 0.1 g/kg/d; p = 0.058), selenium, zinc and copper. Most patients presented in the UGIT and LGIT groups, respectively, worsening malnutrition and muscle depletion according to the Subjective Global Assessment (61.9%; 51.4%) and hypoalbuminemia, mainly in the UGIT in the postoperative. CONCLUSION: Low food consumption during the perioperative period associated with prolongation of the postoperative fasting period worsens the nutritional status of patients undergoing surgery of the gastrointestinal tract for neoplasia, especially in the UGIT group.


Assuntos
Desnutrição , Neoplasias , Trato Gastrointestinal , Humanos , Desnutrição/etiologia , Estado Nutricional , Estudos Prospectivos
5.
J Antimicrob Chemother ; 76(7): 1874-1885, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33880524

RESUMO

BACKGROUND: Current approaches of drug repurposing against COVID-19 have not proven overwhelmingly successful and the SARS-CoV-2 pandemic continues to cause major global mortality. SARS-CoV-2 nsp12, its RNA polymerase, shares homology in the nucleotide uptake channel with the HCV orthologue enzyme NS5B. Besides, HCV enzyme NS5A has pleiotropic activities, such as RNA binding, that are shared with various SARS-CoV-2 proteins. Thus, anti-HCV NS5B and NS5A inhibitors, like sofosbuvir and daclatasvir, respectively, could be endowed with anti-SARS-CoV-2 activity. METHODS: SARS-CoV-2-infected Vero cells, HuH-7 cells, Calu-3 cells, neural stem cells and monocytes were used to investigate the effects of daclatasvir and sofosbuvir. In silico and cell-free based assays were performed with SARS-CoV-2 RNA and nsp12 to better comprehend the mechanism of inhibition of the investigated compounds. A physiologically based pharmacokinetic model was generated to estimate daclatasvir's dose and schedule to maximize the probability of success for COVID-19. RESULTS: Daclatasvir inhibited SARS-CoV-2 replication in Vero, HuH-7 and Calu-3 cells, with potencies of 0.8, 0.6 and 1.1 µM, respectively. Although less potent than daclatasvir, sofosbuvir alone and combined with daclatasvir inhibited replication in Calu-3 cells. Sofosbuvir and daclatasvir prevented virus-induced neuronal apoptosis and release of cytokine storm-related inflammatory mediators, respectively. Sofosbuvir inhibited RNA synthesis by chain termination and daclatasvir targeted the folding of secondary RNA structures in the SARS-CoV-2 genome. Concentrations required for partial daclatasvir in vitro activity are achieved in plasma at Cmax after administration of the approved dose to humans. CONCLUSIONS: Daclatasvir, alone or in combination with sofosbuvir, at higher doses than used against HCV, may be further fostered as an anti-COVID-19 therapy.


Assuntos
COVID-19 , Preparações Farmacêuticas , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Carbamatos , Chlorocebus aethiops , Humanos , Imidazóis , Pirrolidinas , RNA Viral , SARS-CoV-2 , Sofosbuvir/farmacologia , Valina/análogos & derivados , Células Vero
6.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32759267

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is already responsible for far more deaths than previous pathogenic coronaviruses (CoVs) from 2002 and 2012. The identification of clinically approved drugs to be repurposed to combat 2019 CoV disease (COVID-19) would allow the rapid implementation of potentially life-saving procedures. The major protease (Mpro) of SARS-CoV-2 is considered a promising target, based on previous results from related CoVs with lopinavir (LPV), an HIV protease inhibitor. However, limited evidence exists for other clinically approved antiretroviral protease inhibitors. Extensive use of atazanavir (ATV) as antiretroviral and previous evidence suggesting its bioavailability within the respiratory tract prompted us to study this molecule against SARS-CoV-2. Our results show that ATV docks in the active site of SARS-CoV-2 Mpro with greater strength than LPV, blocking Mpro activity. We confirmed that ATV inhibits SARS-CoV-2 replication, alone or in combination with ritonavir (RTV) in Vero cells and a human pulmonary epithelial cell line. ATV/RTV also impaired virus-induced enhancement of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) levels. Together, our data strongly suggest that ATV and ATV/RTV should be considered among the candidate repurposed drugs undergoing clinical trials in the fight against COVID-19.


Assuntos
Antivirais/farmacologia , Sulfato de Atazanavir/farmacologia , Betacoronavirus/efeitos dos fármacos , Citocinas/metabolismo , Ritonavir/farmacologia , Animais , Sulfato de Atazanavir/química , Betacoronavirus/patogenicidade , Betacoronavirus/fisiologia , COVID-19 , Morte Celular/efeitos dos fármacos , Chlorocebus aethiops , Proteases 3C de Coronavírus , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/patologia , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Quimioterapia Combinada , Humanos , Inflamação/metabolismo , Inflamação/virologia , Lopinavir/farmacologia , Simulação de Acoplamento Molecular , Monócitos/virologia , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/metabolismo , Pneumonia Viral/patologia , Inibidores de Proteases/farmacologia , SARS-CoV-2 , Células Vero , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
7.
Artigo em Inglês | MEDLINE | ID: mdl-30455237

RESUMO

Chikungunya virus (CHIKV) causes a febrile disease associated with chronic arthralgia, which may progress to neurological impairment. Chikungunya fever (CF) is an ongoing public health problem in tropical and subtropical regions of the world, where control of the CHIKV vector, Aedes mosquitos, has failed. As there is no vaccine or specific treatment for CHIKV, patients receive only palliative care to alleviate pain and arthralgia. Thus, drug repurposing is necessary to identify antivirals against CHIKV. CHIKV RNA polymerase is similar to the orthologue enzyme of other positive-sense RNA viruses, such as members of the Flaviviridae family. Among the Flaviviridae, not only is hepatitis C virus RNA polymerase susceptible to sofosbuvir, a clinically approved nucleotide analogue, but so is dengue, Zika, and yellow fever virus replication. Here, we found that sofosbuvir was three times more selective in inhibiting CHIKV production in human hepatoma cells than ribavirin, a pan-antiviral drug. Although CHIKV replication in human induced pluripotent stem cell-derived astrocytes was less susceptible to sofosbuvir than were hepatoma cells, sofosbuvir nevertheless impaired virus production and cell death in a multiplicity of infection-dependent manner. Sofosbuvir also exhibited antiviral activity in vivo by preventing CHIKV-induced paw edema in adult mice at a dose of 20 mg/kg of body weight/day and prevented mortality in a neonate mouse model at 40- and 80-mg/kg/day doses. Our data demonstrate that a prototypic alphavirus, CHIKV, is also susceptible to sofosbuvir. As sofosbuvir is a clinically approved drug, our findings could pave the way to it becoming a therapeutic option against CF.


Assuntos
Antivirais/uso terapêutico , Febre de Chikungunya/tratamento farmacológico , Vírus Chikungunya/efeitos dos fármacos , Vírus Chikungunya/patogenicidade , Sofosbuvir/uso terapêutico , Replicação Viral/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Artralgia/tratamento farmacológico , Artralgia/virologia , Febre de Chikungunya/virologia , Humanos , Masculino , Camundongos
8.
Microbes Infect ; : 105400, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39069117

RESUMO

Infection by SARS-CoV-2 is associated with uncontrolled inflammatory response during COVID-19 severe disease, in which monocytes are one of the main sources of pro-inflammatory mediators leading to acute respiratory distress syndrome. Extracellular vesicles (EVs) from different cells play important roles during SARS-CoV-2 infection, but investigations describing the involvement of EVs from primary human monocyte-derived macrophages (MDM) on the regulation of this infection are not available. Here, we describe the effects of EVs released by MDM stimulated with the neuropeptides VIP and PACAP on SARS-CoV-2-infected monocytes. MDM-derived EVs were isolated by differential centrifugation of medium collected from cells cultured for 24 h in serum-reduced conditions. Based on morphological properties, we distinguished two subpopulations of MDM-EVs, namely large (LEV) and small EVs (SEV). We found that MDM-derived EVs stimulated with the neuropeptides inhibited SARS-CoV-2 RNA synthesis/replication in monocytes, protected these cells from virus-induced cytopathic effects and reduced the production of pro-inflammatory mediators. In addition, EVs derived from VIP- and PACAP-treated MDM prevented the SARS-CoV-2-induced NF-κB activation. Overall, our findings suggest that MDM-EVs are endowed with immunoregulatory properties that might contribute to the antiviral and anti-inflammatory responses in SARS-CoV-2-infected monocytes and expand our knowledge of EV effects during COVID-19 pathogenesis.

9.
ACS Omega ; 9(10): 11418-11430, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38496952

RESUMO

The urgent need for effective treatments against emerging viral diseases, driven by drug-resistant strains and new viral variants, remains critical. We focus on inhibiting the human dihydroorotate dehydrogenase (HsDHODH), one of the main enzymes responsible for pyrimidine nucleotide synthesis. This strategy could impede viral replication without provoking resistance. We evaluated naphthoquinone fragments, discovering potent HsDHODH inhibition with IC50 ranging from 48 to 684 nM, and promising in vitro anti-SARS-CoV-2 activity with EC50 ranging from 1.2 to 2.3 µM. These compounds exhibited low toxicity, indicating potential for further development. Additionally, we employed computational tools such as molecular docking and quantitative structure-activity relationship (QSAR) models to analyze protein-ligand interactions, revealing that these naphthoquinones exhibit a protein binding pattern similar to brequinar, a potent HsDHODH inhibitor. These findings represent a significant step forward in the search for effective antiviral treatments and have great potential to impact the development of new broad-spectrum antiviral drugs.

10.
PLoS Negl Trop Dis ; 18(3): e0012013, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484018

RESUMO

BACKGROUND: Chikungunya virus (CHIKV) has spread across Brazil with varying incidence rates depending on the affected areas. Due to cocirculation of arboviruses and overlapping disease symptoms, CHIKV infection may be underdiagnosed. To understand the lack of CHIKV epidemics in São José do Rio Preto (SJdRP), São Paulo (SP), Brazil, we evaluated viral circulation by investigating anti-CHIKV IgG seroconversion in a prospective study of asymptomatic individuals and detecting anti-CHIKV IgM in individuals suspected of dengue infection, as well as CHIKV presence in Aedes mosquitoes. The opportunity to assess two different groups (symptomatic and asymptomatic) exposed at the same geographic region aimed to broaden the possibility of identifying the viral circulation, which had been previously considered absent. METHODOLOGY/PRINCIPAL FINDINGS: Based on a prospective population study model and demographic characteristics (sex and age), we analyzed the anti-CHIKV IgG seroconversion rate in 341 subjects by ELISA over four years. The seroprevalence increased from 0.35% in the first year to 2.3% after 3 years of follow-up. Additionally, we investigated 497 samples from a blood panel collected from dengue-suspected individuals during the 2019 dengue outbreak in SJdRP. In total, 4.4% were positive for anti-CHIKV IgM, and 8.6% were positive for IgG. To exclude alphavirus cross-reactivity, we evaluated the presence of anti-Mayaro virus (MAYV) IgG by ELISA, and the positivity rate was 0.3% in the population study and 0.8% in the blood panel samples. In CHIKV and MAYV plaque reduction neutralization tests (PRNTs), the positivity rate for CHIKV-neutralizing antibodies in these ELISA-positive samples was 46.7%, while no MAYV-neutralizing antibodies were detected. Genomic sequencing and phylogenetic analysis revealed CHIKV genotype ECSA in São José do Rio Preto, SP. Finally, mosquitoes collected to complement human surveillance revealed CHIKV positivity of 2.76% of A. aegypti and 9.09% of A. albopictus (although it was far less abundant than A. aegypti) by RT-qPCR. CONCLUSIONS/SIGNIFICANCE: Our data suggest cryptic CHIKV circulation in SJdRP detected by continual active surveillance. These low levels, but increasing, of viral circulation highlight the possibility of CHIKV outbreaks, as there is a large naïve population. Improved knowledge of the epidemiological situation might aid in outbreaks prevention.


Assuntos
Aedes , Febre de Chikungunya , Vírus Chikungunya , Dengue , Animais , Humanos , Vírus Chikungunya/genética , Estudos Prospectivos , Brasil/epidemiologia , Filogenia , Estudos Soroepidemiológicos , Febre de Chikungunya/epidemiologia , Anticorpos Antivirais , Dengue/diagnóstico , Dengue/epidemiologia , Anticorpos Neutralizantes/genética , Imunoglobulina G , Imunoglobulina M
11.
Front Cell Infect Microbiol ; 13: 1067285, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875528

RESUMO

Introduction: Influenza A virus (IAV) is one of the leading causes of respiratory tract infections in humans, representing a major public health concern. The various types of cell death have a crucial role in IAV pathogenesis because this virus may trigger both apoptosis and necroptosis in airway epithelial cells in parallel. Macrophages play an important role in the clearance of virus particles, priming the adaptive immune response in influenza. However, the contribution of macrophage death to pathogenesis of IAV infection remains unclear. Methods: In this work, we investigated IAV-induced macrophage death, along with potential therapeutic intervention. We conducted in vitro and in vivo experiments to evaluate the mechanism and the contribution of macrophages death to the inflammatory response induced by IAV infection. Results: We found that IAV or its surface glycoprotein hemagglutinin (HA) triggers inflammatory programmed cell death in human and murine macrophages in a Toll-like receptor-4 (TLR4)- and TNF-dependent manner. Anti-TNF treatment in vivo with the clinically approved drug etanercept prevented the engagement of the necroptotic loop and mouse mortality. Etanercept impaired the IAV-induced proinflammatory cytokine storm and lung injury. Conclusion: In summary, we demonstrated a positive feedback loop of events that led to necroptosis and exacerbated inflammation in IAV-infected macrophages. Our results highlight an additional mechanism involved in severe influenza that could be attenuated with clinically available therapies.


Assuntos
Vírus da Influenza A , Influenza Humana , Humanos , Animais , Camundongos , Etanercepte , Inibidores do Fator de Necrose Tumoral , Apoptose , Macrófagos
12.
J Phys Chem A ; 116(45): 10927-33, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22934788

RESUMO

Benzophenone derivatives (BZP), an important class of organic UV filters, are widely used in sunscreen products due to their ability to absorb in the UVA and UVB ranges. The structural, electronic, and spectral properties of BZP derivatives have been studied by density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. DFT/B3LYP with the 6-31G(d) basis set is an accurate method for optimizing the geometry of BZPs. The absorption maxima obtained from the TD-DFT calculations in a vacuum were in agreement with the experimental absorption bands and showed that the main electronic transitions in the UVA/UVB range present π → π* character, the major transition being HOMO → LUMO. The oscillator strength seems to increase in the presence of disubstitution at the para position. For protic substituents, the position appears to be related to the absorption band. Absorption in the UVB range occurs in the presence of para substitution, whereas ortho substitution leads to absorption in the UVA spectral region. The obtained results provide some features for BZP derivatives that can be useful for customizing absorption properties (wavelengths and intensities) and designing new BZP derivatives as sunscreens.


Assuntos
Benzofenonas/química , Modelos Moleculares , Teoria Quântica , Eletrônica , Raios Ultravioleta
13.
Int J Biol Macromol ; 222(Pt A): 1015-1026, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183752

RESUMO

Despite the fast development of vaccines, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still circulates through variants of concern (VoC) and escape the humoral immune response. SARS-CoV-2 has provoked over 200,000 deaths/months since its emergence and only a few antiviral drugs showed clinical benefit up to this moment. Thus, chemical structures endowed with anti-SARS-CoV-2 activity are important for continuous antiviral development and natural products represent a fruitful source of substances with biological activity. In the present study, agathisflavone (AGT), a biflavonoid from Anacardium occidentale was investigated as a candidate anti-SARS-CoV-2 compound. In silico and enzymatic analysis indicated that AGT may target mainly the viral main protease (Mpro) and not the papain-like protease (PLpro) in a non-competitive way. Cell-based assays in type II pneumocytes cell lineage (Calu-3) showed that SARS-CoV-2 is more susceptible to AGT than to apigenin (APG, monomer of AGT), in a dose-dependent manner, with an EC50 of 4.23 ± 0.21 µM and CC50 of 61.3 ± 0.1 µM and with a capacity to inhibit the level of pro-inflammatory mediator tumor necrosis factor-alpha (TNF-α). These results configure AGT as an interesting chemical scaffold for the development of novel semisynthetic antivirals against SARS-CoV-2.


Assuntos
Biflavonoides , Tratamento Farmacológico da COVID-19 , Humanos , SARS-CoV-2 , Proteases 3C de Coronavírus , Biflavonoides/farmacologia , Peptídeo Hidrolases , Antivirais/química , Inibidores de Proteases/química
14.
Eur J Pharm Sci ; 175: 106222, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35649471

RESUMO

The drug delivery systems are an important strategy of pharmaceutical technology to modulate undesirable properties, increasing efficacy, and reducing the side effects of active pharmaceutical ingredients (API). The sustained release is a type of controlled-release system that provides a suitable drug level in the blood through a slow release rate. An interesting alternative to achieve a controlled release is the application of carrier materials such as polymers, cyclodextrins, and clays. Sodium montmorillonite (Na-MMT) is a biocompatible natural clay that allows the insertion of organic compounds in interlamellar space, owing to its high cation exchange capacity and large internal surface area. Bromopride (BPD) is an aminated compound with antiemetic properties classified as class II (low solubility, high permeability) of the Biopharmaceutical Classification System (BCS). Herein, the aim of the study was the development and investigation of a drug delivery system formed by intercalation of BPD with Na-MMT. The results indicate the successful intercalation of this API with the lamellar silicate, meanwhile, there was no evidence of BPD intercalation in organic montmorillonite. The Na-MMT/BPD molecular complex exhibits a sustained release in performed assays. Molecular dynamics simulations suggested that BPD molecules interact with the montmorillonite layer through ion-dipole interactions and also between BPD molecules, forming hydrogen bonds web into montmorillonite interlayer space. The new drug delivery system showed an alternative to achieve the BPD sustained release, which may improve its pharmacological performance in therapeutic applications.


Assuntos
Bentonita , Metoclopramida , Bentonita/química , Argila , Preparações de Ação Retardada , Metoclopramida/análogos & derivados
15.
J Leukoc Biol ; 111(5): 1107-1121, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35322471

RESUMO

Infection by SARS-CoV-2 may elicit uncontrolled and damaging inflammatory responses. Thus, it is critical to identify compounds able to inhibit virus replication and thwart the inflammatory reaction. Here, we show that the plasma levels of the immunoregulatory neuropeptide VIP are elevated in patients with severe COVID-19, correlating with reduced inflammatory mediators and with survival on those patients. In vitro, vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP), highly similar neuropeptides, decreased the SARS-CoV-2 RNA content in human monocytes and viral production in lung epithelial cells, also reducing cell death. Both neuropeptides inhibited the production of proinflammatory mediators in lung epithelial cells and in monocytes. VIP and PACAP prevented in monocytes the SARS-CoV-2-induced activation of NF-kB and SREBP1 and SREBP2, transcriptions factors involved in proinflammatory reactions and lipid metabolism, respectively. They also promoted CREB activation, a transcription factor with antiapoptotic activity and negative regulator of NF-kB. Specific inhibition of NF-kB and SREBP1/2 reproduced the anti-inflammatory, antiviral, and cell death protection effects of VIP and PACAP. Our results support further clinical investigations of these neuropeptides against COVID-19.


Assuntos
COVID-19 , Peptídeo Intestinal Vasoativo , Humanos , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , RNA Viral , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo , SARS-CoV-2 , Fatores de Transcrição/metabolismo , Peptídeo Intestinal Vasoativo/farmacologia
16.
Front Immunol ; 13: 820131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251001

RESUMO

Coronavirus disease 2019 (COVID-19) is currently a worldwide emergency caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). In observational clinical studies, statins have been identified as beneficial to hospitalized patients with COVID-19. However, experimental evidence of underlying statins protection against SARS-CoV-2 remains elusive. Here we reported for the first-time experimental evidence of the protective effects of simvastatin treatment both in vitro and in vivo. We found that treatment with simvastatin significantly reduced the viral replication and lung damage in vivo, delaying SARS-CoV-2-associated physiopathology and mortality in the K18-hACE2-transgenic mice model. Moreover, simvastatin also downregulated the inflammation triggered by SARS-CoV-2 infection in pulmonary tissue and in human neutrophils, peripheral blood monocytes, and lung epithelial Calu-3 cells in vitro, showing its potential to modulate the inflammatory response both at the site of infection and systemically. Additionally, we also observed that simvastatin affected the course of SARS-CoV-2 infection through displacing ACE2 on cell membrane lipid rafts. In conclusion, our results show that simvastatin exhibits early protective effects on SARS-CoV-2 infection by inhibiting virus cell entry and inflammatory cytokine production, through mechanisms at least in part dependent on lipid rafts disruption.


Assuntos
Tratamento Farmacológico da COVID-19 , Regulação para Baixo/efeitos dos fármacos , Inflamação/tratamento farmacológico , Microdomínios da Membrana/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Sinvastatina/farmacologia , Animais , COVID-19/virologia , Modelos Animais de Doenças , Humanos , Inflamação/virologia , Pulmão/virologia , Camundongos , Camundongos Transgênicos , Replicação Viral/efeitos dos fármacos
17.
Cell Death Discov ; 7(1): 43, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649297

RESUMO

Infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been associated with leukopenia and uncontrolled inflammatory response in critically ill patients. A better comprehension of SARS-CoV-2-induced monocyte death is essential for the identification of therapies capable to control the hyper-inflammation and reduce viral replication in patients with 2019 coronavirus disease (COVID-19). Here, we show that SARS-CoV-2 engages inflammasome and triggers pyroptosis in human monocytes, experimentally infected, and from patients under intensive care. Pyroptosis associated with caspase-1 activation, IL-1ß production, gasdermin D cleavage, and enhanced pro-inflammatory cytokine levels in human primary monocytes. At least in part, our results originally describe mechanisms by which monocytes, a central cellular component recruited from peripheral blood to respiratory tract, succumb to control severe COVID-19.

18.
Curr Top Med Chem ; 20(2): 132-139, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31880262

RESUMO

BACKGROUND: Since the influenza virus is the main cause of acute seasonal respiratory infections and pandemic outbreaks, antiviral drugs are critical to mitigate infections and impair chain of transmission. Neuraminidase inhibitors (NAIs) are the main class of anti-influenza drugs in clinical use. Nevertheless, resistance to oseltamivir (OST), the most used NAI, has been detected in circulating strains of the influenza virus. Therefore, novel compounds with anti-influenza activity are necessary. OBJECTIVE: To verify whether the NA from influenza A and B virus is susceptible to the compound 4-(4- phenyl-1H-1,2,3-triazol-1-yl)-2,2,6,6-tetramethylpiperidine-1-oxyl (Tritempo). METHODS: Cell-free neuraminidase inhibition assays were performed with Tritempo, using wild-type (WT) and OST-resistant influenza strains. Cell-based assays in MDCKs were performed to confirm Tritempo`s antiviral activity and cytotoxicity. Multiple passages of the influenza virus in increasing concentrations of our compound, followed by the sequencing of NA gene and molecular docking, were used to identify our Tritempo's target. RESULTS AND DISCUSSION: Indeed, Tritempo inhibited the neuraminidase activity of WT and OSTresistant strains of influenza A and B, at the nanomolar range. Tritempo bound to WT and OST-resistant influenza NA isoforms at the sialic acid binding site with low free binding energies. Cell-free assays were confirmed using a prototypic influenza A infection assay in MDCK cells, in which we found an EC50 of 0.38 µM, along with very low cytotoxicity, CC50 > 2,000 µM. When we passaged the influenza A virus in the presence of Tritempo, a mutant virus with the G248P change in the NA was detected. This mutant was resistant to Tritempo but remained sensitive to OST, indicating no cross-resistance between the studied and reference drugs. CONCLUSION: Our results suggest that Tritempo's chemical structure is a promising one for the development of novel antivirals against influenza.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Neuraminidase/antagonistas & inibidores , Piperidinas/farmacologia , Tiazóis/farmacologia , Triazóis/farmacologia , Antivirais/síntese química , Antivirais/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Vírus da Influenza A/enzimologia , Vírus da Influenza B/enzimologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Neuraminidase/metabolismo , Piperidinas/síntese química , Piperidinas/química , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química , Triazóis/síntese química , Triazóis/química
19.
Curr Top Med Chem ; 20(2): 111-120, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31854280

RESUMO

BACKGROUND: Neuraminidase inhibitors (NAIs) are the only class of antivirals in clinical use against influenza virus approved worldwide. However, approximately 1-3% of circulating strains present resistance mutations to oseltamivir (OST), the most used NAI. Therefore, it is important to catalogue new molecules to inhibit influenza virus, especially OST-resistant strains. Natural products from tropical plants used for human consumption represent a worthy class of substances. Their use could be stimulated in resource-limited setting where the access to expensive antiviral therapies is restricted. METHODS: We evaluated the anti-influenza virus activity of agathisflavone derived from Anacardium occidentale L. RESULTS: The neuraminidase (NA) activity of wild-type and OST-resistant influenza virus was inhibited by agathisflavone, with IC50 values ranging from 20 to 2.0 µM, respectively. Agathisflavone inhibited influenza virus replication with EC50 of 1.3 µM. Sequential passages of the virus in the presence of agathisflavone revealed the emergence of mutation R249S, A250S and R253Q in the NA gene. These changes are outside the OST binding region, meaning that agathisflavone targets this viral enzyme at a region different than conventional NAIs. CONCLUSION: Altogether our data suggest that agathisflavone has a promising chemical structure for the development of anti-influenza drugs.


Assuntos
Anacardium/química , Biflavonoides/farmacologia , Inibidores Enzimáticos/farmacologia , Neuraminidase/antagonistas & inibidores , Orthomyxoviridae/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Animais , Biflavonoides/química , Biflavonoides/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Cães , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Células Madin Darby de Rim Canino/efeitos dos fármacos , Células Madin Darby de Rim Canino/virologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Neuraminidase/metabolismo , Orthomyxoviridae/enzimologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
20.
PLoS Negl Trop Dis ; 13(1): e0007072, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30699122

RESUMO

Yellow fever virus (YFV) is a member of the Flaviviridae family. In Brazil, yellow fever (YF) cases have increased dramatically in sylvatic areas neighboring urban zones in the last few years. Because of the high lethality rates associated with infection and absence of any antiviral treatments, it is essential to identify therapeutic options to respond to YFV outbreaks. Repurposing of clinically approved drugs represents the fastest alternative to discover antivirals for public health emergencies. Other Flaviviruses, such as Zika (ZIKV) and dengue (DENV) viruses, are susceptible to sofosbuvir, a clinically approved drug against hepatitis C virus (HCV). Our data showed that sofosbuvir docks onto YFV RNA polymerase using conserved amino acid residues for nucleotide binding. This drug inhibited the replication of both vaccine and wild-type strains of YFV on human hepatoma cells, with EC50 values around 5 µM. Sofosbuvir protected YFV-infected neonatal Swiss mice and adult type I interferon receptor knockout mice (A129-/-) from mortality and weight loss. Because of its safety profile in humans and significant antiviral effects in vitro and in mice, Sofosbuvir may represent a novel therapeutic option for the treatment of YF. Key-words: Yellow fever virus; Yellow fever, antiviral; sofosbuvir.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral , RNA Viral/efeitos dos fármacos , Sofosbuvir/farmacologia , Febre Amarela/tratamento farmacológico , Vírus da Febre Amarela/efeitos dos fármacos , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Células Hep G2 , Humanos , Camundongos , Camundongos Knockout , RNA Viral/sangue , RNA Viral/genética , Células Vero , Febre Amarela/sangue , Febre Amarela/patologia , Febre Amarela/virologia , Vírus da Febre Amarela/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA