RESUMO
Wnt/Wingless (Wg) signaling controls many aspects of animal development and is deregulated in different human cancers. The transcription factor dTcf/Pangolin (Pan) is the final effector of the Wg pathway in Drosophila and has a dual role in regulating the expression of Wg target genes. In the presence of Wg, dTcf/Pan interacts with ß-catenin/Armadillo (Arm) and induces the transcription of Wg targets. In absence of Wg, dTcf/Pan partners with the transcriptional corepressor TLE/Groucho (Gro) and inhibits gene expression. Here, we use the wing imaginal disk of Drosophila as a model to examine the functions that dTcf/Pan plays in a proliferating epithelium. We report a function of dTcf/Pan in growth control and tumorigenesis. Our results show that dTcf/Pan can limit tissue growth in normal development and suppresses tumorigenesis in the context of oncogene up-regulation. We identify the conserved transcription factors Sox box protein 15 (Sox15) and Ftz transcription factor 1 (Ftz-f1) as genes controlled by dTcf/Pan involved in tumor development. In conclusion, this study reports a role for dTcf/Pan as a repressor of normal and oncogenic growth and identifies the genes inducing tumorigenesis downstream of dTcf/Pan.
Assuntos
Carcinogênese/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Neoplasias/genética , Proteínas Repressoras/genética , Fatores de Transcrição SOX/genética , Fatores de Transcrição/genética , Animais , Proteínas do Domínio Armadillo/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proliferação de Células/genética , Modelos Animais de Doenças , Drosophila melanogaster/genética , Epitélio/crescimento & desenvolvimento , Epitélio/patologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Transdução de Sinais/genética , Proteína Wnt1/genéticaRESUMO
Stingless bees are generalist pollinators distributed through the pantropical region. There is growing evidence that their wild populations are experiencing substantial decline in response to habitat degradation and pesticides. Policies for conservation of endangered species will benefit from studies focusing on genetic and molecular aspects of their development and behavior. The most common method for looking at gene expression is real-time quantitative polymerase chain reaction preceded by reverse transcription (RT-qPCR) of the mRNA of interest. This method requires the identification of reliable reference genes to correctly estimate fluctuations in transcript levels. To contribute to molecular studies on stingless bees, we used Frieseomelitta varia, Melipona quadrifasciata, and Scaptotrigona bipunctata species to test the expression stability of eight reference genes (act, ef1-α, gapdh, rpl32, rps5, rps18, tbp, and tbp-af) in RT-qPCR procedures in five physiological and experimental conditions (development, sex, tissues, bacteria injection, and pesticide exposure). In general, the rpl32, rps5 and rps18 ribosomal protein genes and tpb-af gene showed the highest stability, thus being identified as suitable reference genes for the three stingless bee species and defined conditions. Our results also emphasized the need to evaluate the stability of candidate genes for any designed experimental condition and stingless bee species.
Assuntos
Abelhas/classificação , Abelhas/genética , Expressão Gênica/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Abelhas/crescimento & desenvolvimento , Abelhas/microbiologia , Escherichia coli , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Corpo Adiposo , Feminino , Genes Essenciais , Cabeça , Larva/genética , Masculino , Ovário , Praguicidas/farmacologia , Pupa/genética , SexoRESUMO
Cancers develop in a complex mutational landscape. Genetic models of tumor formation have been used to explore how combinations of mutations cooperate to promote tumor formation in vivo. Here, we identify lactate dehydrogenase (LDH), a key enzyme in Warburg effect metabolism, as a cooperating factor that is both necessary and sufficient for epidermal growth factor receptor (EGFR)-driven epithelial neoplasia and metastasis in a Drosophila model. LDH is upregulated during the transition from hyperplasia to neoplasia, and neoplasia is prevented by LDH depletion. Elevated LDH is sufficient to drive this transition. Notably, genetic alterations that increase glucose flux, or a high-sugar diet, are also sufficient to promote EGFR-driven neoplasia, and this depends on LDH activity. We provide evidence that increased LDHA expression promotes a transformed phenotype in a human primary breast cell culture model. Furthermore, analysis of publically available cancer data showed evidence of synergy between elevated EGFR and LDHA activity linked to poor clinical outcome in a number of human cancers. Altered metabolism has generally been assumed to be an enabling feature that accelerates cancer cell proliferation. Our findings provide evidence that sugar metabolism may have a more profound role in driving neoplasia than previously appreciated.
Assuntos
Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Hidroliases/metabolismo , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Epiteliais e Glandulares/fisiopatologia , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Receptores de Peptídeos de Invertebrados/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Drosophila melanogaster , HumanosRESUMO
MicroRNAs (miRNAs) are key regulators of developmental processes, such as cell fate determination and differentiation. Previous studies showed Dicer knockdown in honeybee embryos disrupt the processing of functional mature miRNAs and impairs embryo patterning. Here we investigated the expression profiles of miRNAs in honeybee embryogenesis and the role of the highly conserved miR-34-5p in the regulation of genes involved in insect segmentation. A total of 221 miRNAs were expressed in honey bee embryogenesis among which 97 mature miRNA sequences have not been observed before. Interestingly, we observed a switch in dominance between the 5-prime and 3-prime arm of some miRNAs in different embryonic stages; however, most miRNAs present one dominant arm across all stages of embryogenesis. Our genome-wide analysis of putative miRNA-target networks and functional pathways indicates miR-34-5p is one of the most conserved and connected miRNAs associated with the regulation of genes involved in embryonic patterning and development. In addition, we experimentally validated that miR-34-5p directly interacts to regulatory elements in the 3'-untranslated regions of pair-rule (even-skipped, hairy, fushi-tarazu transcription factor 1) and cytoskeleton (actin5C) genes. Our study suggests that miR-34-5p may regulate the expression of pair-rule and cytoskeleton genes during early development and control insect segmentation.
Assuntos
Citoesqueleto/genética , Fatores de Transcrição Fushi Tarazu/genética , Proteínas de Homeodomínio/genética , Proteínas de Insetos/genética , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Actinas/química , Actinas/genética , Actinas/metabolismo , Animais , Sequência de Bases , Abelhas/genética , Sítios de Ligação , Desenvolvimento Embrionário/genética , Fatores de Transcrição Fushi Tarazu/química , Fatores de Transcrição Fushi Tarazu/metabolismo , Genoma , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , MicroRNAs/química , MicroRNAs/genética , Alinhamento de Sequência , TranscriptomaRESUMO
Increasing evidence suggests small non-coding RNAs (ncRNAs) such as microRNAs (miRNAs) control levels of mRNA expression during experience-related remodelling of the brain. Here we use an associative olfactory learning paradigm in the honeybee Apis mellifera to examine gene expression changes in the brain during memory formation. Brain transcriptome analysis reveals a general downregulation of protein-coding genes, including asparagine synthetase and actin, and upregulation of ncRNAs. miRNA-mRNA network predictions together with PCR validation suggest miRNAs including miR-210 and miR-932 target the downregulated protein-coding genes. Feeding cholesterol-conjugated antisense RNA to bees results in the inhibition of miR-210 and of miR-932. Loss of miR-932 impairs long-term memory formation, but not memory acquisition. Functional analyses show that miR-932 interacts with Act5C, providing evidence for direct regulation of actin expression by an miRNA. An activity-dependent increase in miR-932 expression may therefore control actin-related plasticity mechanisms and affect memory formation in the brain.
Assuntos
Actinas/genética , Encéfalo/metabolismo , Memória/fisiologia , MicroRNAs/genética , Plasticidade Neuronal/genética , Actinas/metabolismo , Animais , Abelhas , Perfilação da Expressão Gênica , Aprendizagem , MicroRNAs/metabolismo , RNA não Traduzido/genéticaRESUMO
In insects, a rapid and massive synthesis of antimicrobial peptides (AMPs) is activated through signaling pathways (Toll and Imd) to combat invading microbial pathogens. However, it is still unclear whether different types of bacteria provoke specific responses. Immune response mechanisms and the activation of specific genes were investigated by challenging Apis mellifera workers with the Gram-negative bacterium Serratia marcescens or the Gram-positive bacterium Micrococcus luteus. The immune system responded by activating most genes of the Toll and Imd pathways, particularly AMP genes. However, genes specifically regulated by M. luteus or S. marcescens were not detected, suggesting an interaction between the signaling pathways that lead to immune effectors synthesis. Despite this finding, kappaB motifs in the 5'-UTRs of selected genes suggest a pathway-specific control of AMP and transferrin-1 gene expression. Regulation by miRNAs was also investigated and revealed a number of candidates for the post-transcriptional regulation of immune genes in bees.