Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 33(R1): R19-R25, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38779769

RESUMO

Human mitochondria harbour a circular, polyploid genome (mtDNA) encoding 11 messenger RNAs (mRNAs), two ribosomal RNAs (rRNAs) and 22 transfer RNAs (tRNAs). Mitochondrial transcription produces long, polycistronic transcripts that span almost the entire length of the genome, and hence contain all three types of RNAs. The primary transcripts then undergo a number of processing and maturation steps, which constitute key regulatory points of mitochondrial gene expression. The first step of mitochondrial RNA processing consists of the separation of primary transcripts into individual, functional RNA molecules and can occur by two distinct pathways. Both are carried out by dedicated molecular machineries that substantially differ from RNA processing enzymes found elsewhere. As a result, the underlying molecular mechanisms remain poorly understood. Over the last years, genetic, biochemical and structural studies have identified key players involved in both RNA processing pathways and provided the first insights into the underlying mechanisms. Here, we review our current understanding of RNA processing in mammalian mitochondria and provide an outlook on open questions in the field.


Assuntos
DNA Mitocondrial , Mitocôndrias , Processamento Pós-Transcricional do RNA , RNA Mitocondrial , Humanos , DNA Mitocondrial/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Animais , Transcrição Gênica , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
2.
Hum Mol Genet ; 31(12): 2049-2062, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35024855

RESUMO

The SLC25A26 gene encodes a mitochondrial inner membrane carrier that transports S-adenosylmethionine (SAM) into the mitochondrial matrix in exchange for S-adenosylhomocysteine (SAH). SAM is the predominant methyl-group donor for most cellular methylation processes, of which SAH is produced as a by-product. Pathogenic, biallelic SLC25A26 variants are a recognized cause of mitochondrial disease in children, with a severe neonatal onset caused by decreased SAM transport activity. Here, we describe two, unrelated adult cases, one of whom presented with recurrent episodes of severe abdominal pain and metabolic decompensation with lactic acidosis. Both patients had exercise intolerance and mitochondrial myopathy associated with biallelic variants in SLC25A26, which led to marked respiratory chain deficiencies and mitochondrial histopathological abnormalities in skeletal muscle that are comparable to those previously described in early-onset cases. We demonstrate using both mouse and fruit fly models that impairment of SAH, rather than SAM, transport across the mitochondrial membrane is likely the cause of this milder, late-onset phenotype. Our findings associate a novel pathomechanism with a known disease-causing protein and highlight the quests of precision medicine in optimizing diagnosis, therapeutic intervention and prognosis.


Assuntos
Doenças Mitocondriais , S-Adenosil-Homocisteína , Animais , Metilação , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo
3.
Mol Cell Proteomics ; 20: 100065, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33640490

RESUMO

Drosophila melanogaster has been a workhorse of genetics and cell biology for more than a century. However, proteomic-based methods have been limited due to the complexity and dynamic range of the fly proteome and the lack of efficient labeling methods. Here, we advanced a chemically defined food source into direct stable-isotope labeling of amino acids in flies (SILAF). It allows for the rapid and cost-efficient generation of a large number of larvae or flies, with full incorporation of lysine-[13C6] after six labeling days. SILAF followed by fractionation and enrichment gave proteomic insights at a depth of 7196 proteins and 8451 phosphorylation sites, which substantiated metabolic regulation on enzymatic level. We applied SILAF to quantify the mitochondrial phosphoproteome of an early-stage leucine-rich PPR motif-containing protein (LRPPRC)-knockdown fly model of mitochondrial disease that almost exclusively affects protein levels of the oxidative phosphorylation (OXPHOS) system. While the mitochondrial compartment was hypo-phosphorylated, two conserved phosphosites on OXPHOS subunits NDUFB10 and NDUFA4 were significantly upregulated upon impaired OXPHOS function. The ease and versatility of the method actuate the fruit fly as an appealing model in proteomic and posttranslational modification studies, and it enlarges potential metabolic applications based on heavy amino acid diets.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas Mitocondriais/metabolismo , Fosfoproteínas/metabolismo , Aminoácidos/metabolismo , Animais , Drosophila melanogaster , Feminino , Marcação por Isótopo , Masculino , Fosforilação , Proteoma
4.
PLoS Genet ; 15(7): e1008240, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31365523

RESUMO

The RNA helicase SUV3 and the polynucleotide phosphorylase PNPase are involved in the degradation of mitochondrial mRNAs but their roles in vivo are not fully understood. Additionally, upstream processes, such as transcript maturation, have been linked to some of these factors, suggesting either dual roles or tightly interconnected mechanisms of mitochondrial RNA metabolism. To get a better understanding of the turn-over of mitochondrial RNAs in vivo, we manipulated the mitochondrial mRNA degrading complex in Drosophila melanogaster models and studied the molecular consequences. Additionally, we investigated if and how these factors interact with the mitochondrial poly(A) polymerase, MTPAP, as well as with the mitochondrial mRNA stabilising factor, LRPPRC. Our results demonstrate a tight interdependency of mitochondrial mRNA stability, polyadenylation and the removal of antisense RNA. Furthermore, disruption of degradation, as well as polyadenylation, leads to the accumulation of double-stranded RNAs, and their escape out into the cytoplasm is associated with an altered immune-response in flies. Together our results suggest a highly organised and inter-dependable regulation of mitochondrial RNA metabolism with far reaching consequences on cellular physiology.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , RNA Mitocondrial/química , RNA Mitocondrial/metabolismo , Animais , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Feminino , Masculino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Poliadenilação , Polirribonucleotídeo Nucleotidiltransferase/genética , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Estabilidade de RNA , RNA Antissenso/química , RNA Antissenso/metabolismo , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo
5.
Hum Mutat ; 42(4): 378-384, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33502047

RESUMO

Mutations in structural subunits and assembly factors of complex I of the oxidative phosphorylation system constitute the most common cause of mitochondrial respiratory chain defects. Such mutations can present a wide range of clinical manifestations, varying from mild deficiencies to severe, lethal disorders. We describe a patient presenting intrauterine growth restriction and anemia, which displayed postpartum hypertrophic cardiomyopathy, lactic acidosis, encephalopathy, and a severe complex I defect with fatal outcome. Whole genome sequencing revealed an intronic biallelic mutation in the NDUFB7 gene (c.113-10C>G) and splicing pattern alterations in NDUFB7 messenger RNA were confirmed by RNA Sequencing. The detected variant resulted in a significant reduction of the NDUFB7 protein and reduced complex I activity. Complementation studies with expression of wild-type NDUFB7 in patient fibroblasts normalized complex I function. Here we report a case with a primary complex I defect due to a homozygous mutation in an intron region of the NDUFB7 gene.


Assuntos
Acidose Láctica , Cardiomiopatia Hipertrófica , Doenças Mitocondriais , NADH NADPH Oxirredutases/genética , Acidose Láctica/genética , Cardiomiopatia Hipertrófica/genética , Complexo I de Transporte de Elétrons/genética , Humanos , Doenças Mitocondriais/genética , Mutação
6.
J Pediatr ; 228: 240-251.e2, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32827528

RESUMO

OBJECTIVES: To evaluate the clinical symptoms and biochemical findings and establish the genetic etiology in a cohort of pediatric patients with combined deficiencies of the mitochondrial respiratory chain complexes. STUDY DESIGN: Clinical and biochemical data were collected from 55 children. All patients were subjected to sequence analysis of the entire mitochondrial genome, except when the causative mutations had been identified based on the clinical picture. Whole exome sequencing/whole genome sequencing (WES/WGS) was performed in 32 patients. RESULTS: Onset of disease was generally early in life (median age, 6 weeks). The most common symptoms were muscle weakness, hypotonia, and developmental delay/intellectual disability. Nonneurologic symptoms were frequent. Disease causing mutations were found in 20 different nuclear genes, and 7 patients had mutations in mitochondrial DNA. Causative variants were found in 18 of the 32 patients subjected to WES/WGS. Interestingly, many patients had low levels of coenzyme Q10 in muscle, irrespective of genetic cause. CONCLUSIONS: Children with combined enzyme defects display a diversity of clinical symptoms with varying age of presentation. We established the genetic diagnosis in 35 of the 55 patients (64%). The high diagnostic yield was achieved by the introduction of massive parallel sequencing, which also revealed novel genes and enabled elucidation of new disease mechanisms.


Assuntos
DNA Mitocondrial/genética , Doenças Metabólicas/genética , Doenças Mitocondriais/genética , Mutação , Ubiquinona/análogos & derivados , Adolescente , Adulto , Criança , Pré-Escolar , Análise Mutacional de DNA , Humanos , Lactente , Recém-Nascido , Doenças Metabólicas/enzimologia , Doenças Mitocondriais/enzimologia , Ubiquinona/sangue , Sequenciamento do Exoma , Adulto Jovem
7.
Cell Mol Life Sci ; 77(13): 2483-2496, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31912194

RESUMO

Understanding the mechanisms behind neurodifferentiation in adults will be an important milestone in our quest to identify treatment strategies for cognitive disorders observed during our natural ageing or disease. It is now clear that the maturation of neural stem cells to neurones, fully integrated into neuronal circuits requires a complete remodelling of cellular metabolism, including switching the cellular energy source. Mitochondria are central for this transition and are increasingly seen as the regulatory hub in defining neural stem cell fate and neurodevelopment. This review explores our current knowledge of metabolism during adult neurodifferentiation.


Assuntos
Encéfalo/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Adulto , Animais , Humanos , Metabolismo dos Lipídeos , Mitocôndrias/ultraestrutura , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
8.
Nucleic Acids Res ; 47(17): 9386-9399, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31396629

RESUMO

In all biological systems, RNAs are associated with RNA-binding proteins (RBPs), forming complexes that control gene regulatory mechanisms, from RNA synthesis to decay. In mammalian mitochondria, post-transcriptional regulation of gene expression is conducted by mitochondrial RBPs (mt-RBPs) at various stages of mt-RNA metabolism, including polycistronic transcript production, its processing into individual transcripts, mt-RNA modifications, stability, translation and degradation. To date, only a handful of mt-RBPs have been characterized. Here, we describe a putative human mitochondrial protein, C6orf203, that contains an S4-like domain-an evolutionarily conserved RNA-binding domain previously identified in proteins involved in translation. Our data show C6orf203 to bind highly structured RNA in vitro and associate with the mitoribosomal large subunit in HEK293T cells. Knockout of C6orf203 leads to a decrease in mitochondrial translation and consequent OXPHOS deficiency, without affecting mitochondrial RNA levels. Although mitoribosome stability is not affected in C6orf203-depleted cells, mitoribosome profiling analysis revealed a global disruption of the association of mt-mRNAs with the mitoribosome, suggesting that C6orf203 may be required for the proper maturation and functioning of the mitoribosome. We therefore propose C6orf203 to be a novel RNA-binding protein involved in mitochondrial translation, expanding the repertoire of factors engaged in this process.


Assuntos
Mitocôndrias/genética , Proteínas Mitocondriais/biossíntese , RNA Mitocondrial/genética , Proteínas de Ligação a RNA/genética , Animais , Células HEK293 , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/fisiologia , Ribossomos Mitocondriais/metabolismo , RNA Mensageiro/genética , RNA Ribossômico/genética , Proteínas de Ligação a RNA/fisiologia
9.
Hum Mol Genet ; 26(13): 2515-2525, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28430993

RESUMO

Mutations in the mitochondrial DNA polymerase, POLG, are associated with a variety of clinical presentations, ranging from early onset fatal brain disease in Alpers syndrome to chronic progressive external ophthalmoplegia. The majority of mutations are linked with disturbances of mitochondrial DNA (mtDNA) integrity and maintenance. On a molecular level, depending on their location within the enzyme, mutations either lead to mtDNA depletion or the accumulation of multiple mtDNA deletions, and in some cases these molecular changes can be correlated to the clinical presentation. We identified a patient with a dominant p.Y955H mutation in POLG, presenting with a severe, early-onset multi-systemic mitochondrial disease with bilateral sensorineural hearing loss, cataract, myopathy, and liver failure. Using a combination of disease models of Drosophila melanogaster and in vitro biochemistry analysis, we compare the molecular consequences of the p.Y955H mutation to the well-documented p.Y955C mutation. We demonstrate that both mutations affect mtDNA replication and display a dominant negative effect, with the p.Y955H allele resulting in a more severe polymerase dysfunction.


Assuntos
DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Adulto , Sequência de Aminoácidos , Animais , DNA Polimerase gama , Replicação do DNA/genética , DNA Mitocondrial/genética , Modelos Animais de Doenças , Drosophila melanogaster/genética , Feminino , Humanos , Lactente , Mitocôndrias/genética , Mutação/genética , Oftalmoplegia Externa Progressiva Crônica/enzimologia , Linhagem , Fenótipo
10.
Am J Hum Genet ; 99(3): 735-743, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27545679

RESUMO

SQSTM1 (sequestosome 1; also known as p62) encodes a multidomain scaffolding protein involved in various key cellular processes, including the removal of damaged mitochondria by its function as a selective autophagy receptor. Heterozygous variants in SQSTM1 have been associated with Paget disease of the bone and might contribute to neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Using exome sequencing, we identified three different biallelic loss-of-function variants in SQSTM1 in nine affected individuals from four families with a childhood- or adolescence-onset neurodegenerative disorder characterized by gait abnormalities, ataxia, dysarthria, dystonia, vertical gaze palsy, and cognitive decline. We confirmed absence of the SQSTM1/p62 protein in affected individuals' fibroblasts and found evidence of a defect in the early response to mitochondrial depolarization and autophagosome formation. Our findings expand the SQSTM1-associated phenotypic spectrum and lend further support to the concept of disturbed selective autophagy pathways in neurodegenerative diseases.


Assuntos
Ataxia/genética , Autofagia/genética , Distonia/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/fisiopatologia , Proteína Sequestossoma-1/deficiência , Paralisia Supranuclear Progressiva/genética , Adolescente , Adulto , Idade de Início , Ataxia/complicações , Autofagossomos/metabolismo , Autofagossomos/patologia , Criança , Transtornos Cognitivos/genética , Disartria/complicações , Disartria/genética , Distonia/complicações , Feminino , Fibroblastos/metabolismo , Marcha/genética , Humanos , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Transtornos dos Movimentos/complicações , Transtornos dos Movimentos/genética , Doenças Neurodegenerativas/complicações , Linhagem , Fenótipo , RNA Mensageiro/análise , Proteína Sequestossoma-1/genética , Paralisia Supranuclear Progressiva/complicações , Adulto Jovem
11.
Nature ; 501(7467): 412-5, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-23965628

RESUMO

Ageing is due to an accumulation of various types of damage, and mitochondrial dysfunction has long been considered to be important in this process. There is substantial sequence variation in mammalian mitochondrial DNA (mtDNA), and the high mutation rate is counteracted by different mechanisms that decrease maternal transmission of mutated mtDNA. Despite these protective mechanisms, it is becoming increasingly clear that low-level mtDNA heteroplasmy is quite common and often inherited in humans. We designed a series of mouse mutants to investigate the extent to which inherited mtDNA mutations can contribute to ageing. Here we report that maternally transmitted mtDNA mutations can induce mild ageing phenotypes in mice with a wild-type nuclear genome. Furthermore, maternally transmitted mtDNA mutations lead to anticipation of reduced fertility in mice that are heterozygous for the mtDNA mutator allele (PolgA(wt/mut)) and aggravate premature ageing phenotypes in mtDNA mutator mice (PolgA(mut/mut)). Unexpectedly, a combination of maternally transmitted and somatic mtDNA mutations also leads to stochastic brain malformations. Our findings show that a pre-existing mutation load will not only allow somatic mutagenesis to create a critically high total mtDNA mutation load sooner but will also increase clonal expansion of mtDNA mutations to enhance the normally occurring mosaic respiratory chain deficiency in ageing tissues. Our findings suggest that maternally transmitted mtDNA mutations may have a similar role in aggravating aspects of normal human ageing.


Assuntos
Envelhecimento/genética , Encéfalo/anormalidades , Encéfalo/metabolismo , DNA Mitocondrial/genética , Herança Extracromossômica/genética , Mitocôndrias/genética , Mutação/genética , Envelhecimento/patologia , Alelos , Animais , Encéfalo/crescimento & desenvolvimento , Núcleo Celular/genética , Feminino , Genoma/genética , Heterozigoto , Tamanho da Ninhada de Vivíparos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese/genética , Fenótipo , Reprodução/genética , Reprodução/fisiologia , Processos Estocásticos
12.
PLoS Genet ; 12(5): e1006028, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27176048

RESUMO

Polyadenylation has well characterised roles in RNA turnover and translation in a variety of biological systems. While polyadenylation on mitochondrial transcripts has been suggested to be a two-step process required to complete translational stop codons, its involvement in mitochondrial RNA turnover is less well understood. We studied knockdown and knockout models of the mitochondrial poly(A) polymerase (MTPAP) in Drosophila melanogaster and demonstrate that polyadenylation of mitochondrial mRNAs is exclusively performed by MTPAP. Further, our results show that mitochondrial polyadenylation does not regulate mRNA stability but protects the 3' terminal integrity, and that despite a lack of functioning 3' ends, these trimmed transcripts are translated, suggesting that polyadenylation is not required for mitochondrial translation. Additionally, loss of MTPAP leads to reduced steady-state levels and disturbed maturation of tRNACys, indicating that polyadenylation in mitochondria might be important for the stability and maturation of specific tRNAs.


Assuntos
Drosophila melanogaster/genética , Poliadenilação/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , Animais , Códon de Terminação , Técnicas de Silenciamento de Genes , Mitocôndrias/genética , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/genética , RNA Mitocondrial , RNA de Transferência/genética
13.
Am J Hum Genet ; 97(5): 761-8, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26522469

RESUMO

S-adenosylmethionine (SAM) is the predominant methyl group donor and has a large spectrum of target substrates. As such, it is essential for nearly all biological methylation reactions. SAM is synthesized by methionine adenosyltransferase from methionine and ATP in the cytoplasm and subsequently distributed throughout the different cellular compartments, including mitochondria, where methylation is mostly required for nucleic-acid modifications and respiratory-chain function. We report a syndrome in three families affected by reduced intra-mitochondrial methylation caused by recessive mutations in the gene encoding the only known mitochondrial SAM transporter, SLC25A26. Clinical findings ranged from neonatal mortality resulting from respiratory insufficiency and hydrops to childhood acute episodes of cardiopulmonary failure and slowly progressive muscle weakness. We show that SLC25A26 mutations cause various mitochondrial defects, including those affecting RNA stability, protein modification, mitochondrial translation, and the biosynthesis of CoQ10 and lipoic acid.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Proteínas de Ligação ao Cálcio/genética , Metilação de DNA , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Debilidade Muscular/genética , Mutação/genética , S-Adenosilmetionina/metabolismo , Sequência de Aminoácidos , Pré-Escolar , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Debilidade Muscular/patologia , Linhagem , Prognóstico , Estabilidade de RNA , Homologia de Sequência de Aminoácidos , Ácido Tióctico/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
14.
Hum Mol Genet ; 24(23): 6580-7, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26374844

RESUMO

Muscle weakness and exercise intolerance are hallmark symptoms in mitochondrial disorders. Little is known about the mechanisms leading to impaired skeletal muscle function and ultimately muscle weakness in these patients. In a mouse model of lethal mitochondrial myopathy, the muscle-specific Tfam knock-out (KO) mouse, we previously demonstrated an excessive mitochondrial Ca(2+) uptake in isolated muscle fibers that could be inhibited by the cyclophilin D (CypD) inhibitor, cyclosporine A (CsA). Here we show that the Tfam KO mice have increased CypD levels, and we demonstrate that this increase is a common feature in patients with mitochondrial myopathy. We tested the effect of CsA treatment on Tfam KO mice during the transition from a mild to terminal myopathy. CsA treatment counteracted the development of muscle weakness and improved muscle fiber Ca(2+) handling. Importantly, CsA treatment prolonged the lifespan of these muscle-specific Tfam KO mice. These results demonstrate that CsA treatment is an efficient therapeutic strategy to slow the development of severe mitochondrial myopathy.


Assuntos
Ciclofilinas/antagonistas & inibidores , Ciclosporina/uso terapêutico , Mitocôndrias/metabolismo , Miopatias Mitocondriais/tratamento farmacológico , Músculo Esquelético/metabolismo , Animais , Cálcio/metabolismo , Peptidil-Prolil Isomerase F , Ciclofilinas/efeitos dos fármacos , Ciclofilinas/genética , DNA Mitocondrial , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Miopatias Mitocondriais/genética , Miopatias Mitocondriais/metabolismo , Músculo Esquelético/efeitos dos fármacos , Mutação
15.
Am J Hum Genet ; 95(3): 285-93, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25152457

RESUMO

Neu-Laxova syndrome (NLS) is a rare autosomal-recessive disorder characterized by a recognizable pattern of severe malformations leading to prenatal or early postnatal lethality. Homozygous mutations in PHGDH, a gene involved in the first and limiting step in L-serine biosynthesis, were recently identified as the cause of the disease in three families. By studying a cohort of 12 unrelated families affected by NLS, we provide evidence that NLS is genetically heterogeneous and can be caused by mutations in all three genes encoding enzymes of the L-serine biosynthesis pathway. Consistent with recently reported findings, we could identify PHGDH missense mutations in three unrelated families of our cohort. Furthermore, we mapped an overlapping homozygous chromosome 9 region containing PSAT1 in four consanguineous families. This gene encodes phosphoserine aminotransferase, the enzyme for the second step in L-serine biosynthesis. We identified six families with three different missense and frameshift PSAT1 mutations fully segregating with the disease. In another family, we discovered a homozygous frameshift mutation in PSPH, the gene encoding phosphoserine phosphatase, which catalyzes the last step of L-serine biosynthesis. Interestingly, all three identified genes have been previously implicated in serine-deficiency disorders, characterized by variable neurological manifestations. Our findings expand our understanding of NLS as a disorder of the L-serine biosynthesis pathway and suggest that NLS represents the severe end of serine-deficiency disorders, demonstrating that certain complex syndromes characterized by early lethality could indeed be the extreme end of the phenotypic spectrum of already known disorders.


Assuntos
Anormalidades Múltiplas/genética , Encefalopatias/genética , Retardo do Crescimento Fetal/genética , Ictiose/genética , Deformidades Congênitas dos Membros/genética , Microcefalia/genética , Mutação/genética , Fosfoglicerato Desidrogenase/genética , Monoéster Fosfórico Hidrolases/genética , Serina/biossíntese , Transaminases/genética , Anormalidades Múltiplas/metabolismo , Sequência de Aminoácidos , Encefalopatias/metabolismo , Consanguinidade , Família , Feminino , Retardo do Crescimento Fetal/metabolismo , Homozigoto , Humanos , Ictiose/metabolismo , Deformidades Congênitas dos Membros/metabolismo , Masculino , Microcefalia/metabolismo , Dados de Sequência Molecular , Fosfoglicerato Desidrogenase/química , Fosfoglicerato Desidrogenase/deficiência , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/deficiência , Conformação Proteica , Homologia de Sequência de Aminoácidos , Serina/química , Transaminases/química , Transaminases/deficiência
16.
Mol Genet Metab ; 121(3): 216-223, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28552678

RESUMO

Coenzyme Q10 (CoQ10) is an essential cofactor of the mitochondrial oxidative phosphorylation (OXPHOS) system and its deficiency has important implications for several inherited metabolic disorders of childhood. The biosynthesis of CoQ10 is a complicated process, which involves at least 12 different enzymes. One of the metabolic intermediates that are formed during CoQ10 biosynthesis is the molecule 6-demethoxyubiquinone (6-DMQ). This CoQ precursor is processed at the level of COQ7 and COQ9. We selected this metabolite as a marker substance for metabolic analysis of cell lines with inherited genetic defects (COQ2, COQ4, COQ7 and COQ9) or siRNA knockdown in CoQ biosynthesis enzymes using ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). In COQ4, COQ7 and COQ9 deficient cell lines, we detected significantly elevated levels of 6-DMQ. This suggests a functional interplay of these proteins. However, additional siRNA studies demonstrated that elevated 6-DMQ levels are not an exclusive marker of the COQ7/COQ9 enzymatic step of CoQ10 biosynthesis but constitute a more general phenomenon that occurs in disorders impairing the function or stability of the CoQ-synthome. To further investigate the interdependence of CoQ10 biosynthesis enzyme expression, we performed immunoblotting in various cell lines with CoQ10 deficiency, indicating that COQ4, COQ7 and COQ9 protein expression levels are highly regulated depending on the underlying defect. Supplementation of cell lines with synthetic CoQ precursor compounds demonstrated beneficial effects of 2,4-dihydroxybenzoic acid in COQ7 and COQ9 deficiency. Moreover, vanillic acid selectively stimulated CoQ10 biosynthesis and improved cell viability in COQ9 deficiency. However, compounds tested in this study failed to rescue COQ4 deficiency.


Assuntos
Ataxia/metabolismo , Doenças Mitocondriais/metabolismo , Debilidade Muscular/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/deficiência , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Hidroxibenzoatos/farmacologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , Espectrometria de Massas em Tandem , Ubiquinona/biossíntese , Ubiquinona/metabolismo , Ácido Vanílico/farmacologia
17.
Nucleic Acids Res ; 43(15): 7398-413, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26152302

RESUMO

Mitochondrial gene expression is largely regulated by post-transcriptional mechanisms that control the amount and translation of each mitochondrial mRNA. Despite its importance for mitochondrial function, the mechanisms and proteins involved in mRNA turnover are still not fully characterized. Studies in yeast and human cell lines have indicated that the mitochondrial helicase SUV3, together with the polynucleotide phosphorylase, PNPase, composes the mitochondrial degradosome. To further investigate the in vivo function of SUV3 we disrupted the homolog of SUV3 in Drosophila melanogaster (Dm). Loss of dmsuv3 led to the accumulation of mitochondrial mRNAs, without increasing rRNA levels, de novo transcription or decay intermediates. Furthermore, we observed a severe decrease in mitochondrial tRNAs accompanied by an accumulation of unprocessed precursor transcripts. These processing defects lead to reduced mitochondrial translation and a severe respiratory chain complex deficiency, resulting in a pupal lethal phenotype. In summary, our results propose that SUV3 is predominantly required for the processing of mitochondrial polycistronic transcripts in metazoan and that this function is independent of PNPase.


Assuntos
Proteínas de Drosophila/fisiologia , Proteínas Mitocondriais/fisiologia , RNA Helicases/fisiologia , Processamento Pós-Transcricional do RNA , RNA/metabolismo , Animais , Linhagem Celular , RNA Helicases DEAD-box/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Transporte de Elétrons , Genes Letais , Células HeLa , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/genética , Biossíntese de Proteínas , RNA Helicases/genética , RNA Helicases/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , RNA Mitocondrial , RNA Ribossômico/metabolismo , RNA de Transferência/metabolismo
18.
Nucleic Acids Res ; 43(19): 9262-75, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26253742

RESUMO

The majority of mitochondrial DNA replication events are terminated prematurely. The nascent DNA remains stably associated with the template, forming a triple-stranded displacement loop (D-loop) structure. However, the function of the D-loop region of the mitochondrial genome remains poorly understood. Using a comparative genomics approach we here identify two closely related 15 nt sequence motifs of the D-loop, strongly conserved among vertebrates. One motif is at the D-loop 5'-end and is part of the conserved sequence block 1 (CSB1). The other motif, here denoted coreTAS, is at the D-loop 3'-end. Both these sequences may prevent transcription across the D-loop region, since light and heavy strand transcription is terminated at CSB1 and coreTAS, respectively. Interestingly, the replication of the nascent D-loop strand, occurring in a direction opposite to that of heavy strand transcription, is also terminated at coreTAS, suggesting that coreTAS is involved in termination of both transcription and replication. Finally, we demonstrate that the loading of the helicase TWINKLE at coreTAS is reversible, implying that this site is a crucial component of a switch between D-loop formation and full-length mitochondrial DNA replication.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA , DNA Mitocondrial/biossíntese , DNA Mitocondrial/química , Proteínas Mitocondriais/metabolismo , Animais , Sequência de Bases , Sequência Conservada , Células HeLa , Humanos , Sequências Repetidas Invertidas , Camundongos , Motivos de Nucleotídeos , RNA Citoplasmático Pequeno/química , RNA Citoplasmático Pequeno/genética , Sequências Reguladoras de Ácido Nucleico , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/genética , Terminação da Transcrição Genética , Vertebrados/genética
19.
J Med Genet ; 52(11): 779-83, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26084283

RESUMO

BACKGROUND: Coenzyme Q is an essential mitochondrial electron carrier, redox cofactor and a potent antioxidant in the majority of cellular membranes. Coenzyme Q deficiency has been associated with a range of metabolic diseases, as well as with some drug treatments and ageing. METHODS: We used whole exome sequencing (WES) to investigate patients with inherited metabolic diseases and applied a novel ultra-pressure liquid chromatography-mass spectrometry approach to measure coenzyme Q in patient samples. RESULTS: We identified a homozygous missense mutation in the COQ7 gene in a patient with complex mitochondrial deficiency, resulting in severely reduced coenzyme Q levels We demonstrate that the coenzyme Q analogue 2,4-dihydroxybensoic acid (2,4DHB) was able to specifically bypass the COQ7 deficiency, increase cellular coenzyme Q levels and rescue the biochemical defect in patient fibroblasts. CONCLUSION: We report the first patient with primary coenzyme Q deficiency due to a homozygous COQ7 mutation and a potentially beneficial treatment using 2,4DHB.


Assuntos
Ataxia/genética , Hidroxibenzoatos/uso terapêutico , Doenças Mitocondriais/genética , Debilidade Muscular/genética , Mutação de Sentido Incorreto , Ubiquinona/deficiência , Sequência de Aminoácidos , Ataxia/diagnóstico , Ataxia/tratamento farmacológico , Criança , Pré-Escolar , Cromatografia Líquida , Análise Mutacional de DNA , Exoma , Homozigoto , Humanos , Recém-Nascido , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/tratamento farmacológico , Dados de Sequência Molecular , Debilidade Muscular/diagnóstico , Debilidade Muscular/tratamento farmacológico , Alinhamento de Sequência , Espectrometria de Massas em Tandem , Ubiquinona/genética
20.
Nucleic Acids Res ; 42(2): 1111-6, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24163253

RESUMO

Variants of mitochondrial DNA (mtDNA) are commonly used as markers to track human evolution because of the high sequence divergence and exclusive maternal inheritance. It is assumed that the inheritance is clonal, i.e. that mtDNA is transmitted between generations without germline recombination. In contrast to this assumption, a number of studies have reported the presence of recombinant mtDNA molecules in cell lines and animal tissues, including humans. If germline recombination of mtDNA is frequent, it would strongly impact phylogenetic and population studies by altering estimates of coalescent time and branch lengths in phylogenetic trees. Unfortunately, this whole area is controversial and the experimental approaches have been widely criticized as they often depend on polymerase chain reaction (PCR) amplification of mtDNA and/or involve studies of transformed cell lines. In this study, we used an in vivo mouse model that has had germline heteroplasmy for a defined set of mtDNA mutations for more than 50 generations. To assess recombination, we adapted and validated a method based on cloning of single mtDNA molecules in the λ phage, without prior PCR amplification, followed by subsequent mutation analysis. We screened 2922 mtDNA molecules and found no germline recombination after transmission of mtDNA under genetically and evolutionary relevant conditions in mammals.


Assuntos
DNA Mitocondrial/química , Recombinação Genética , Animais , Artefatos , Bacteriófago lambda/genética , Clonagem Molecular , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA