Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nucleic Acids Res ; 42(2): 1079-94, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24157836

RESUMO

The zinc finger transcription factor Snail1 regulates epithelial to mesenchymal transition, repressing epithelial markers and activating mesenchymal genes. Snail1 is an extremely labile protein degraded by the cytoplasmic ubiquitin-ligases ß-TrCP1/FBXW1 and Ppa/FBXL14. Using a short hairpin RNA screening, we have identified FBXL5 as a novel Snail1 ubiquitin ligase. FBXL5 is located in the nucleus where it interacts with Snail1 promoting its polyubiquitination and affecting Snail1 protein stability and function by impairing DNA binding. Snail1 downregulation by FBXL5 is prevented by Lats2, a protein kinase that phosphorylates Snail1 precluding its nuclear export but not its polyubiquitination. Actually, although polyubiquitination by FBXL5 takes place in the nucleus, Snail1 is degraded in the cytosol. Finally, FBXL5 is highly sensitive to stress conditions and is downregulated by iron depletion and γ-irradiation, explaining Snail1 stabilization in these conditions. These results characterize a novel nuclear ubiquitin ligase controlling Snail1 protein stability and provide the molecular basis for understanding how radiotherapy upregulates the epithelial to mesenchymal transition-inducer Snail1.


Assuntos
Núcleo Celular/enzimologia , Proteínas F-Box/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , DNA/metabolismo , Raios gama , Humanos , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , RNA Interferente Pequeno , Fatores de Transcrição da Família Snail , Complexos Ubiquitina-Proteína Ligase
2.
Oncoimmunology ; 12(1): 2158610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36545256

RESUMO

Immune-checkpoint inhibitors (ICI) are highly effective in reinvigorating T cells to attack cancer. Nevertheless, a large subset of patients fails to benefit from ICI, partly due to lack of the cancer neoepitopes necessary to trigger an immune response. In this study, we used the thiopurine 6-thioguanine (6TG) to induce random mutations and thus increase the level of neoepitopes presented by tumor cells. Thiopurines are prodrugs which are converted into thioguanine nucleotides that are incorporated into DNA (DNA-TG), where they can induce mutation through single nucleotide mismatching. In a pre-clinical mouse model of a mutation-low melanoma cell line, we demonstrated that 6TG induced clinical-grade DNA-TG integration resulting in an improved tumor control that was strongly T cell dependent. 6TG exposure increased the tumor mutational burden, without affecting tumor cell proliferation and cell death. Moreover, 6TG treatment re-shaped the tumor microenvironment by increasing T and NK immune cells, making the tumors more responsive to immune-checkpoint blockade. We further validated that 6TG exposure improved tumor control in additional mouse models of melanoma. These findings have paved the way for a phase I/II clinical trial that explores whether treatment with thiopurines can increase the proportion of otherwise treatment-resistant cancer patients who may benefit from ICI therapy (NCT05276284).


Assuntos
Melanoma , Tioguanina , Animais , Camundongos , Inibidores de Checkpoint Imunológico , Melanoma/tratamento farmacológico , Melanoma/genética , Mutação , Tioguanina/farmacologia , Tioguanina/uso terapêutico , Microambiente Tumoral , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto
3.
J Immunother Cancer ; 11(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36868570

RESUMO

BACKGROUND: Loss of Ambra1 (autophagy and beclin 1 regulator 1), a multifunctional scaffold protein, promotes the formation of nevi and contributes to several phases of melanoma development. The suppressive functions of Ambra1 in melanoma are mediated by negative regulation of cell proliferation and invasion; however, evidence suggests that loss of Ambra1 may also affect the melanoma microenvironment. Here, we investigate the possible impact of Ambra1 on antitumor immunity and response to immunotherapy. METHODS: This study was performed using an Ambra1-depleted BrafV600E /Pten-/ - genetically engineered mouse (GEM) model of melanoma, as well as GEM-derived allografts of BrafV600E /Pten-/ - and BrafV600E /Pten-/ -/Cdkn2a-/ - tumors with Ambra1 knockdown. The effects of Ambra1 loss on the tumor immune microenvironment (TIME) were analyzed using NanoString technology, multiplex immunohistochemistry, and flow cytometry. Transcriptome and CIBERSORT digital cytometry analyses of murine melanoma samples and human melanoma patients (The Cancer Genome Atlas) were applied to determine the immune cell populations in null or low-expressing AMBRA1 melanoma. The contribution of Ambra1 on T-cell migration was evaluated using a cytokine array and flow cytometry. Tumor growth kinetics and overall survival analysis in BrafV600E /Pten-/ -/Cdkn2a-/ - mice with Ambra1 knockdown were evaluated prior to and after administration of a programmed cell death protein-1 (PD-1) inhibitor. RESULTS: Loss of Ambra1 was associated with altered expression of a wide range of cytokines and chemokines as well as decreased infiltration of tumors by regulatory T cells, a subpopulation of T cells with potent immune-suppressive properties. These changes in TIME composition were associated with the autophagic function of Ambra1. In the BrafV600E /Pten-/ -/Cdkn2a-/ - model inherently resistant to immune checkpoint blockade, knockdown of Ambra1 led to accelerated tumor growth and reduced overall survival, but at the same time conferred sensitivity to anti-PD-1 treatment. CONCLUSIONS: This study shows that loss of Ambra1 affects the TIME and the antitumor immune response in melanoma, highlighting new functions of Ambra1 in the regulation of melanoma biology.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Humanos , Animais , Camundongos , Autofagia , Movimento Celular , Proliferação de Células , Citocinas , Microambiente Tumoral , Proteínas Adaptadoras de Transdução de Sinal
4.
J Biol Chem ; 286(14): 12024-32, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21317430

RESUMO

Snail1 and Zeb1 are E-cadherin-transcriptional repressors induced during epithelial mesenchymal transition (EMT). In this article we have analyzed the factors controlling Zeb1 expression during EMT. In NMuMG cells treated with TGF-ß, Snail1 RNA and protein are induced 1 h after addition of the cytokine preceding Zeb1 up-regulation that requires 6-8 h. Zeb1 gene expression is caused by increased RNA levels but also by enhanced protein stability and is markedly dependent on Snail1 because depletion of this protein prevents Zeb1 protein and RNA up-regulation. In addition to Snail1, depletion of the Twist transcriptional factor retards Zeb1 stimulation by TGF-ß or decreases Zeb1 expression in other cellular models indicating that this factor is also required for Zeb1 expression. Accordingly, Snail1 and Twist cooperate in the induction of Zeb1: co-transfection of both cDNAs is required for the maximal expression of ZEB1 mRNA. Unexpectedly, the expression of Snail1 and Twist shows a mutual dependence although to a different extent; whereas Twist depletion retards Snail1 up-regulation by TGF-ß, Snail1 is necessary for the rapid increase in Twist protein and later up-regulation of Twist1 mRNA induced by the cytokine. Besides this effect on Twist, Snail1 also induces the nuclear translocation of Ets1, another factor required for Zeb1 expression. Both Twist and Ets1 bind to the ZEB1 promoter although to different elements: whereas Ets1 interacts with the proximal promoter, Twist does it with a 700-bp sequence upstream of the transcription start site. These results indicate that Snail1 controls Zeb1 expression at multiple levels and acts cooperatively with Twist in the ZEB1 gene transcription induction.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Animais , Células Cultivadas , Imunoprecipitação da Cromatina , Transição Epitelial-Mesenquimal/genética , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Ligação Proteica/efeitos dos fármacos , Proteína Proto-Oncogênica c-ets-1/genética , Proteína Proto-Oncogênica c-ets-1/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/farmacologia , Proteína 1 Relacionada a Twist/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco
5.
Nat Commun ; 12(1): 2550, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953176

RESUMO

Melanoma is the deadliest skin cancer. Despite improvements in the understanding of the molecular mechanisms underlying melanoma biology and in defining new curative strategies, the therapeutic needs for this disease have not yet been fulfilled. Herein, we provide evidence that the Activating Molecule in Beclin-1-Regulated Autophagy (Ambra1) contributes to melanoma development. Indeed, we show that Ambra1 deficiency confers accelerated tumor growth and decreased overall survival in Braf/Pten-mutated mouse models of melanoma. Also, we demonstrate that Ambra1 deletion promotes melanoma aggressiveness and metastasis by increasing cell motility/invasion and activating an EMT-like process. Moreover, we show that Ambra1 deficiency in melanoma impacts extracellular matrix remodeling and induces hyperactivation of the focal adhesion kinase 1 (FAK1) signaling, whose inhibition is able to reduce cell invasion and melanoma growth. Overall, our findings identify a function for AMBRA1 as tumor suppressor in melanoma, proposing FAK1 inhibition as a therapeutic strategy for AMBRA1 low-expressing melanoma.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Melanoma/genética , Melanoma/metabolismo , Animais , Autofagia/fisiologia , Proteína Beclina-1/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Feminino , Quinase 1 de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Melanoma/patologia , Camundongos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais , Transcriptoma
6.
Nat Commun ; 11(1): 4709, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948765

RESUMO

Glioblastoma cancer-stem like cells (GSCs) display marked resistance to ionizing radiation (IR), a standard of care for glioblastoma patients. Mechanisms underpinning radio-resistance of GSCs remain largely unknown. Chromatin state and the accessibility of DNA lesions to DNA repair machineries are crucial for the maintenance of genomic stability. Understanding the functional impact of chromatin remodeling on DNA repair in GSCs may lay the foundation for advancing the efficacy of radio-sensitizing therapies. Here, we present the results of a high-content siRNA microscopy screen, revealing the transcriptional elongation factor SPT6 to be critical for the genomic stability and self-renewal of GSCs. Mechanistically, SPT6 transcriptionally up-regulates BRCA1 and thereby drives an error-free DNA repair in GSCs. SPT6 loss impairs the self-renewal, genomic stability and tumor initiating capacity of GSCs. Collectively, our results provide mechanistic insights into how SPT6 regulates DNA repair and identify SPT6 as a putative therapeutic target in glioblastoma.


Assuntos
Reparo do DNA , Instabilidade Genômica , Glioblastoma/genética , Células-Tronco Neoplásicas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Apoptose , Proteína BRCA1 , Neoplasias Encefálicas/genética , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Inativação Gênica , Glioblastoma/patologia , Células HEK293 , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Células-Tronco Neoplásicas/patologia , RNA Interferente Pequeno/genética , Tolerância a Radiação , Radiação Ionizante , Transcriptoma
7.
EBioMedicine ; 29: 112-127, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29433983

RESUMO

Epidermal growth factor receptor (EGFR)-mutation-positive non-smallcell lung cancer (NSCLC) is incurable, despite high rates of response to EGFR tyrosine kinase inhibitors (TKIs). We investigated receptor tyrosine kinases (RTKs), Src family kinases and focal adhesion kinase (FAK) as genetic modifiers of innate resistance in EGFR-mutation-positive NSCLC. We performed gene expression analysis in two cohorts (Cohort 1 and Cohort 2) of EGFR-mutation-positive NSCLC patients treated with EGFR TKI. We evaluated the efficacy of gefitinib or osimertinib with the Src/FAK/Janus kinase 2 (JAK2) inhibitor, TPX0005 in vitro and in vivo. In Cohort 1, CUB domain-containing protein-1 (CDCP1) was an independent negative prognostic factor for progression-free survival (hazard ratio of 1.79, p=0.0407) and overall survival (hazard ratio of 2.23, p=0.0192). A two-gene model based on AXL and CDCP1 expression was strongly associated with the clinical outcome to EGFR TKIs, in both cohorts of patients. Our preclinical experiments revealed that several RTKs and non-RTKs, were up-regulated at baseline or after treatment with gefitinib or osimertinib. TPX-0005 plus EGFR TKI suppressed expression and activation of RTKs and downstream signaling intermediates. Co-expression of CDCP1 and AXL is often observed in EGFR-mutation-positive tumors, limiting the efficacy of EGFR TKIs. Co-treatment with EGFR TKI and TPX-0005 warrants testing.


Assuntos
Antígenos CD/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Moléculas de Adesão Celular/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Mutação , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antígenos de Neoplasias , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Moléculas de Adesão Celular/agonistas , Sobrevivência Celular , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Ativação Enzimática , Receptores ErbB/antagonistas & inibidores , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Biológicos , Proteínas de Neoplasias/agonistas , Proteômica/métodos , Proteínas Proto-Oncogênicas/agonistas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Proteína Tirosina Quinases/agonistas , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tirosina Quinase Axl
8.
Mol Cell Biol ; 36(6): 923-40, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26711268

RESUMO

Notch activation in aortic endothelial cells (ECs) takes place at embryonic stages during cardiac valve formation and induces endothelial-to-mesenchymal transition (EndMT). Using aortic ECs, we show here that active Notch expression promotes EndMT, resulting in downregulation of vascular endothelial cadherin (VE-cadherin) and upregulation of mesenchymal genes such as those for fibronectin and Snail1/2. In these cells, transforming growth factor ß1 exacerbates Notch effects by increasing Snail1 and fibronectin activation. When Notch-downstream pathways were analyzed, we detected an increase in glycogen synthase kinase 3ß (GSK-3ß) phosphorylation and inactivation that facilitates Snail1 nuclear retention and protein stabilization. However, the total activity of Akt was downregulated. The discrepancy between Akt activity and GSK-3ß phosphorylation is explained by a Notch-induced switch in the Akt isoforms, whereby Akt1, the predominant isoform expressed in ECs, is decreased and Akt2 transcription is upregulated. Mechanistically, Akt2 induction requires the stimulation of the ß-catenin/TCF4 transcriptional complex, which activates the Akt2 promoter. Active, phosphorylated Akt2 translocates to the nucleus in Notch-expressing cells, resulting in GSK-3ß inactivation in this compartment. Akt2, but not Akt1, colocalizes in the nucleus with lamin B in the nuclear envelope. In addition to promoting GSK-3ß inactivation, Notch downregulates Forkhead box O1 (FoxO1), another Akt2 nuclear substrate. Moreover, Notch protects ECs from oxidative stress-induced apoptosis through an Akt2- and Snail1-dependent mechanism.


Assuntos
Morte Celular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Notch/metabolismo , Fatores de Transcrição/genética , Animais , Aorta/citologia , Linhagem Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Transição Epitelial-Mesenquimal , Regulação da Expressão Gênica , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Células HEK293 , Humanos , Camundongos , Estresse Oxidativo , Isoformas de Proteínas/análise , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-akt/análise , Proteínas Proto-Oncogênicas c-akt/genética , Fatores de Transcrição da Família Snail , Suínos , Fatores de Transcrição/análise , Fatores de Transcrição/metabolismo , Regulação para Cima , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA