Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Mol Ecol ; 32(5): 1197-1210, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36478482

RESUMO

Apicomplexans are a protozoan phylum of obligate parasites which may be highly virulent during acute infections, but may also persist as chronic infections which appear to have little fitness cost. Babesia microti is an apicomplexan haemoparasite that, in immunocompromised individuals, can cause severe, potentially fatal disease. However, in its natural host, wild field voles (Microtus agrestis), it exhibits chronic infections that have no detectable impact on survival or female fecundity. How is damage minimized, and what is the impact on the host's immune state and health? We examine the differences in immune state (here represented by expression of immune-related genes in multiple tissues) associated with several common chronic infections in a population of wild field voles. While some infections show little impact on immune state, we find strong associations between immune state and B. microti. These include indications of clearance of infected erythrocytes (increased macrophage activity in the spleen) and activity likely associated with minimizing damage from the infection (anti-inflammatory and antioxidant activity in the blood). By analysing gene expression from the same individuals at multiple time points, we show that the observed changes are a response to infection, rather than a risk factor. Our results point towards continual investment to minimize the damage caused by the infection. Thus, we shed light on how wild animals can tolerate some chronic infections, but emphasize that this tolerance does not come without a cost.


Assuntos
Babesiose , Animais , Feminino , Babesiose/epidemiologia , Babesiose/parasitologia , Roedores , Infecção Persistente , Arvicolinae , Imunomodulação
2.
Mol Ecol ; 32(13): 3471-3482, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37009948

RESUMO

Individuals differ in the nature of the immune responses they produce, affecting disease susceptibility and ultimately health and fitness. These differences have been hypothesized to have an origin in events experienced early in life that then affect trajectories of immune development and responsiveness. Here, we investigate how early-life immune expression profiles influence life history outcomes in a natural population of field voles, Microtus agrestis, in which we are able to monitor variation between and within individuals through time by repeat sampling of individually marked animals. We analysed the co-expression of 20 immune genes in early life to create a correlation network consisting of three main clusters, one of which (containing Gata3, Il10 and Il17) was associated with later-life reproductive success and susceptibility to chronic bacterial (Bartonella) infection. More detailed analyses supported associations between early-life expression of Il17 and reproductive success later in life, and of Il10 expression early in life and later infection with Bartonella. We also found significant association between an Il17 genotype and the early-life expression of Il10. Our results demonstrate that immune expression profiles can be manifested during early life with effects that persist through adulthood and that shape the variability among individuals in susceptibility to infection and fitness widely seen in natural populations.


Assuntos
Infecções por Bartonella , Bartonella , Doenças dos Roedores , Animais , Interleucina-10/genética , Roedores , Genótipo , Arvicolinae/genética , Doenças dos Roedores/microbiologia
3.
Mol Ecol ; 27(4): 1044-1052, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29290094

RESUMO

The animal immune response has hitherto been viewed primarily in the context of resistance only. However, individuals can also employ a tolerance strategy to maintain good health in the face of ongoing infection. To shed light on the genetic and physiological basis of tolerance, we use a natural population of field voles, Microtus agrestis, to search for an association between the expression of the transcription factor Gata3, previously identified as a marker of tolerance in this system, and polymorphism in 84 immune and nonimmune genes. Our results show clear evidence for an association between Gata3 expression and polymorphism in the Fcer1a gene, with the explanatory power of this polymorphism being comparable to that of other nongenetic variables previously identified as important predictors of Gata3 expression. We also uncover the possible mechanism behind this association using an existing protein-protein interaction network for the mouse model rodent, Mus musculus, which we validate using our own expression network for M. agrestis. Our results suggest that the polymorphism in question may be working at the transcriptional level, leading to changes in the expression of the Th2-related genes, Tyrosine-protein kinase BTK and Tyrosine-protein kinase TXK, and hence potentially altering the strength of the Th2 response, of which Gata3 is a mediator. We believe our work has implications for both treatment and control of infectious disease.


Assuntos
Adaptação Fisiológica/genética , Arvicolinae/genética , Estudos de Associação Genética , Genética Populacional , Tirosina Quinase da Agamaglobulinemia/genética , Animais , Fator de Transcrição GATA3/genética , Haplótipos/genética , Camundongos , Polimorfismo Genético , Mapas de Interação de Proteínas , Proteínas Tirosina Quinases/genética , Receptores de IgE/genética
4.
Glob Chang Biol ; 24(1): 371-386, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28746785

RESUMO

Immune defense is temperature dependent in cold-blooded vertebrates (CBVs) and thus directly impacted by global warming. We examined whether immunity and within-host infectious disease progression are altered in CBVs under realistic climate warming in a seasonal mid-latitude setting. Going further, we also examined how large thermal effects are in relation to the effects of other environmental variation in such a setting (critical to our ability to project infectious disease dynamics from thermal relationships alone). We employed the three-spined stickleback and three ecologically relevant parasite infections as a "wild" model. To generate a realistic climatic warming scenario we used naturalistic outdoors mesocosms with precise temperature control. We also conducted laboratory experiments to estimate thermal effects on immunity and within-host infectious disease progression under controlled conditions. As experimental readouts we measured disease progression for the parasites and expression in 14 immune-associated genes (providing insight into immunophenotypic responses). Our mesocosm experiment demonstrated significant perturbation due to modest warming (+2°C), altering the magnitude and phenology of disease. Our laboratory experiments demonstrated substantial thermal effects. Prevailing thermal effects were more important than lagged thermal effects and disease progression increased or decreased in severity with increasing temperature in an infection-specific way. Combining laboratory-determined thermal effects with our mesocosm data, we used inverse modeling to partition seasonal variation in Saprolegnia disease progression into a thermal effect and a latent immunocompetence effect (driven by nonthermal environmental variation and correlating with immune gene expression). The immunocompetence effect was large, accounting for at least as much variation in Saprolegnia disease as the thermal effect. This suggests that managers of CBV populations in variable environments may not be able to reliably project infectious disease risk from thermal data alone. Nevertheless, such projections would be improved by primarily considering prevailing thermal effects in the case of within-host disease and by incorporating validated measures of immunocompetence.


Assuntos
Doenças dos Peixes/parasitologia , Saprolegnia/fisiologia , Smegmamorpha/parasitologia , Animais , Doenças dos Peixes/imunologia , Aquecimento Global , Estações do Ano , Temperatura
5.
J Immunol ; 197(6): 2195-207, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27527598

RESUMO

The antimicrobial responsiveness and function of unconventional human T cells are poorly understood, with only limited access to relevant specimens from sites of infection. Peritonitis is a common and serious complication in individuals with end-stage kidney disease receiving peritoneal dialysis. By analyzing local and systemic immune responses in peritoneal dialysis patients presenting with acute bacterial peritonitis and monitoring individuals before and during defined infectious episodes, our data show that Vγ9/Vδ2(+) γδ T cells and mucosal-associated invariant T cells accumulate at the site of infection with organisms producing (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate and vitamin B2, respectively. Such unconventional human T cells are major producers of IFN-γ and TNF-α in response to these ligands that are shared by many microbial pathogens and affect the cells lining the peritoneal cavity by triggering local inflammation and inducing tissue remodeling with consequences for peritoneal membrane integrity. Our data uncover a crucial role for Vγ9/Vδ2 T cells and mucosal-associated invariant T cells in bacterial infection and suggest that they represent a useful predictive marker for important clinical outcomes, which may inform future stratification and patient management. These findings are likely to be applicable to other acute infections where local activation of unconventional T cells contributes to the antimicrobial inflammatory response.


Assuntos
Infecções Bacterianas/imunologia , Linfócitos T/fisiologia , Infecções Bacterianas/patologia , Movimento Celular , Transição Epitelial-Mesenquimal , Humanos , Interferon gama/biossíntese , Ligantes , Infiltração de Neutrófilos , Peritonite/imunologia , Fator de Necrose Tumoral alfa/biossíntese
6.
Kidney Int ; 92(1): 179-191, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28318629

RESUMO

The immune system has evolved to sense invading pathogens, control infection, and restore tissue integrity. Despite symptomatic variability in patients, unequivocal evidence that an individual's immune system distinguishes between different organisms and mounts an appropriate response is lacking. We here used a systematic approach to characterize responses to microbiologically well-defined infection in a total of 83 peritoneal dialysis patients on the day of presentation with acute peritonitis. A broad range of cellular and soluble parameters was determined in peritoneal effluents, covering the majority of local immune cells, inflammatory and regulatory cytokines and chemokines as well as tissue damage-related factors. Our analyses, utilizing machine-learning algorithms, demonstrate that different groups of bacteria induce qualitatively distinct local immune fingerprints, with specific biomarker signatures associated with Gram-negative and Gram-positive organisms, and with culture-negative episodes of unclear etiology. Even more, within the Gram-positive group, unique immune biomarker combinations identified streptococcal and non-streptococcal species including coagulase-negative Staphylococcus spp. These findings have diagnostic and prognostic implications by informing patient management and treatment choice at the point of care. Thus, our data establish the power of non-linear mathematical models to analyze complex biomedical datasets and highlight key pathways involved in pathogen-specific immune responses.


Assuntos
Bactérias/imunologia , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Positivas/diagnóstico , Aprendizado de Máquina , Mapeamento de Peptídeos/métodos , Diálise Peritoneal/efeitos adversos , Peritonite/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , Testes Imediatos , Doença Aguda , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Área Sob a Curva , Bactérias/classificação , Bactérias/patogenicidade , Biomarcadores/metabolismo , Estudos de Casos e Controles , Feminino , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/metabolismo , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/metabolismo , Infecções por Bactérias Gram-Positivas/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Masculino , Pessoa de Meia-Idade , Dinâmica não Linear , Reconhecimento Automatizado de Padrão , Peritonite/imunologia , Peritonite/metabolismo , Peritonite/microbiologia , Valor Preditivo dos Testes , Curva ROC , Reprodutibilidade dos Testes , Fatores de Tempo , Adulto Jovem
7.
PLoS Biol ; 12(7): e1001901, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25004450

RESUMO

Hosts are likely to respond to parasitic infections by a combination of resistance (expulsion of pathogens) and tolerance (active mitigation of pathology). Of these strategies, the basis of tolerance in animal hosts is relatively poorly understood, with especially little known about how tolerance is manifested in natural populations. We monitored a natural population of field voles using longitudinal and cross-sectional sampling modes and taking measurements on body condition, infection, immune gene expression, and survival. Using analyses stratified by life history stage, we demonstrate a pattern of tolerance to macroparasites in mature compared to immature males. In comparison to immature males, mature males resisted infection less and instead increased investment in body condition in response to accumulating burdens, but at the expense of reduced reproductive effort. We identified expression of the transcription factor Gata3 (a mediator of Th2 immunity) as an immunological biomarker of this tolerance response. Time series data for individual animals suggested that macroparasite infections gave rise to increased expression of Gata3, which gave rise to improved body condition and enhanced survival as hosts aged. These findings provide a clear and unexpected insight into tolerance responses (and their life history sequelae) in a natural vertebrate population. The demonstration that such responses (potentially promoting parasite transmission) can move from resistance to tolerance through the course of an individual's lifetime emphasises the need to incorporate them into our understanding of the dynamics and risk of infection in the natural environment. Moreover, the identification of Gata3 as a marker of tolerance to macroparasites raises important new questions regarding the role of Th2 immunity and the mechanistic nature of the tolerance response itself. A more manipulative, experimental approach is likely to be valuable in elaborating this further.


Assuntos
Arvicolinae/imunologia , Tolerância Imunológica/fisiologia , Animais , Animais Selvagens , Estudos Transversais , Fator de Transcrição GATA3/biossíntese , Interações Hospedeiro-Parasita , Estudos Longitudinais , Masculino , Doenças Parasitárias/imunologia
8.
BMC Evol Biol ; 16: 175, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27586387

RESUMO

BACKGROUND: The effect of anthropogenic environments on the function of the vertebrate immune system is a problem of general importance. For example, it relates to the increasing rates of immunologically-based disease in modern human populations and to the desirability of identifying optimal immune function in domesticated animals. Despite this importance, our present understanding is compromised by a deficit of experimental studies that make adequately matched comparisons between wild and captive vertebrates. RESULTS: We transferred post-larval fishes (three-spined sticklebacks), collected in the wild, to an anthropogenic (captive) environment. We then monitored, over 11 months, how the systemic expression of immunity genes changed in comparison to cohort-matched wild individuals in the originator population (total n = 299). We found that a range of innate (lyz, defbl2, il1r-like, tbk1) and adaptive (cd8a, igmh) immunity genes were up-regulated in captivity, accompanied by an increase in expression of the antioxidant enzyme, gpx4a. For some genes previously known to show seasonality in the wild, this appeared to be reduced in captive fishes. Captive fishes tended to express immunity genes, including igzh, foxp3b, lyz, defbl2, and il1r-like, more variably. Furthermore, although gene co-expression patterns (analyzed through gene-by-gene correlations and mutual information theory based networks) shared common structure in wild and captive fishes, there was also significant divergence. For one gene in particular, defbl2, high expression was associated with adverse health outcomes in captive fishes. CONCLUSION: Taken together, these results demonstrate widespread regulatory changes in the immune system in captive populations, and that the expression of immunity genes is more constrained in the wild. An increase in constitutive systemic immune activity, such as we observed here, may alter the risk of immunopathology and contribute to variance in health in vertebrate populations exposed to anthropogenic environments.


Assuntos
Meio Ambiente , Regulação da Expressão Gênica , Imunidade/genética , Vertebrados/genética , Vertebrados/imunologia , Imunidade Adaptativa/genética , Animais , Ecossistema , Humanos , Imunidade Inata/genética , Larva/genética , Larva/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Estações do Ano , Smegmamorpha/genética , Smegmamorpha/imunologia , Regulação para Cima/genética
9.
BMC Genomics ; 17: 369, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27189372

RESUMO

BACKGROUND: Fishes show seasonal patterns of immunity, but such phenomena are imperfectly understood in vertebrates generally, even in humans and mice. As these seasonal patterns may link to infectious disease risk and individual condition, the nature of their control has real practical implications. Here we characterize seasonal dynamics in the expression of conserved vertebrate immunity genes in a naturally-occurring piscine model, the three-spined stickleback. RESULTS: We made genome-wide measurements (RNAseq) of whole-fish mRNA pools (n = 36) at the end of summer and winter in contrasting habitats (riverine and lacustrine) and focussed on common trends to filter habitat-specific from overarching temporal responses. We corroborated this analysis with targeted year-round whole-fish gene expression (Q-PCR) studies in a different year (n = 478). We also considered seasonal tissue-specific expression (6 tissues) (n = 15) at a third contrasting (euryhaline) locality by Q-PCR, further validating the generality of the patterns seen in whole fish analyses. Extremes of season were the dominant predictor of immune expression (compared to sex, ontogeny or habitat). Signatures of adaptive immunity were elevated in late summer. In contrast, late winter was accompanied by signatures of innate immunity (including IL-1 signalling and non-classical complement activity) and modulated toll-like receptor signalling. Negative regulators of T-cell activity were prominent amongst winter-biased genes, suggesting that adaptive immunity is actively down-regulated during winter rather than passively tracking ambient temperature. Network analyses identified a small set of immune genes that might lie close to a regulatory axis. These genes acted as hubs linking summer-biased adaptive pathways, winter-biased innate pathways and other organismal processes, including growth, metabolic dynamics and responses to stress and temperature. Seasonal change was most pronounced in the gill, which contains a considerable concentration of T-cell activity in the stickleback. CONCLUSIONS: Our results suggest major and predictable seasonal re-adjustments of immunity. Further consideration should be given to the effects of such responses in seasonally-occurring disease.


Assuntos
Imunidade , Imunomodulação , Estações do Ano , Vertebrados/imunologia , Imunidade Adaptativa/genética , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genoma , Estudo de Associação Genômica Ampla , Imunidade/genética , Imunidade Inata/genética , Imunomodulação/genética , Especificidade de Órgãos/genética , Transdução de Sinais , Receptores Toll-Like/metabolismo , Vertebrados/genética
10.
Elife ; 122023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36645701

RESUMO

The genotype of an individual is an important predictor of their immune function, and subsequently, their ability to control or avoid infection and ultimately contribute offspring to the next generation. However, the same genotype, subjected to different intrinsic and/or extrinsic environments, can also result in different phenotypic outcomes, which can be missed in controlled laboratory studies. Natural wildlife populations, which capture both genotypic and environmental variability, provide an opportunity to more fully understand the phenotypic expression of genetic variation. We identified a synonymous polymorphism in the high-affinity Immunoglobulin E (IgE) receptor (GC and non-GC haplotypes) that has sex-dependent effects on immune gene expression, susceptibility to infection, and reproductive success of individuals in a natural population of field voles (Microtus agrestis). We found that the effect of the GC haplotype on the expression of immune genes differed between sexes. Regardless of sex, both pro-inflammatory and anti-inflammatory genes were more highly relatively expressed in individuals with the GC haplotype than individuals without the haplotype. However, males with the GC haplotype showed a stronger signal for pro-inflammatory genes, while females showed a stronger signal for anti-inflammatory genes. Furthermore, we found an effect of the GC haplotype on the probability of infection with a common microparasite, Babesia microti, in females - with females carrying the GC haplotype being more likely to be infected. Finally, we found an effect of the GC haplotype on reproductive success in males - with males carrying the GC haplotype having a lower reproductive success. This is a rare example of a polymorphism whose consequences we are able to follow across immunity, infection, and reproduction for both males and females in a natural population.


Assuntos
Receptores de IgE , Roedores , Animais , Masculino , Feminino , Polimorfismo Genético , Genótipo , Haplótipos , Reprodução/genética
11.
Mol Ecol ; 20(5): 893-909, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21059128

RESUMO

A revolutionary advance in ecological immunology is that postgenomic technologies now allow molecular mediators defined in laboratory models to be measured at the mRNA level in field studies of many naturally occurring species. Here, we demonstrate the application of such an approach to generate meaningful immunological profiles for wild mammals. We sampled a natural field vole population across the year (n = 307) and developed a battery of cellular assays in which functionally different pro- and anti-inflammatory signalling responses (transcription factors and cytokines) were activated and quantified by Q-PCR. Temporal trends were the strongest feature in the expression data, although some life history stages (mating vs. nonmating males and pregnant females) were also associated with significant variation. There was a striking set of significant negative associations between inflammatory mediators and condition indices reflecting packed erythrocyte volume and relative liver size, spleen size and splenocyte count. Grouped (principal component) measures of inflammatory and anti-inflammatory expression were high in winter, with minima in the breeding season that occurred earlier for grouped anti-inflammatory responses than for grouped inflammatory responses. Some individual immunological mediators also showed patterns unrelated to the breeding season or annual periodic cues. For example, interferon regulatory factor 5 (IRF5) expression declined throughout the study period, indicating a systematic trend in antimicrobial defences. Pinpointing the causes and consequences of such variation may help identify underlying environmental drivers of individual fitness and demographic fluctuation.


Assuntos
Arvicolinae/imunologia , Inflamação/imunologia , Animais , Animais Selvagens/sangue , Animais Selvagens/imunologia , Arvicolinae/sangue , Células Cultivadas , Volume de Eritrócitos , Feminino , Perfilação da Expressão Gênica , Inflamação/sangue , Fatores Reguladores de Interferon/metabolismo , Masculino , Mitógenos/farmacologia , Análise Multivariada , Tamanho do Órgão , Gravidez , Estações do Ano , Baço/citologia , Baço/efeitos dos fármacos , Baço/imunologia , Fatores de Tempo
12.
BMC Biol ; 7: 16, 2009 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-19386086

RESUMO

BACKGROUND: Immunological analyses of wild populations can increase our understanding of how vertebrate immune systems respond to 'natural' levels of exposure to diverse infections. A major recent advance in immunology has been the recognition of the central role of phylogenetically conserved toll-like receptors in triggering innate immunity and the subsequent recruitment of adaptive response programmes. We studied the cross-sectional associations between individual levels of systemic toll-like receptor-mediated tumour necrosis factor alpha responsiveness and macro- and microparasite infections in a natural wood mouse (Apodemus sylvaticus) population. RESULTS: Amongst a diverse group of macroparasites, only levels of the nematode Heligmosomoides polygyrus and the louse Polyplax serrata were correlated (negatively) with innate immune responsiveness (measured by splenocyte tumour necrosis factor alpha responses to a panel of toll-like receptor agonists). Polyplax serrata infection explained a strikingly high proportion of the total variation in innate responses. Contrastingly, faecal oocyst count in microparasitic Eimeria spp. was positively associated with innate immune responsiveness, most significantly for the endosomal receptors TLR7 and TLR9. CONCLUSION: Analogy with relevant laboratory models suggests the underlying causality for the observed patterns may be parasite-driven immunomodulatory effects on the host. A subset of immunomodulatory parasite species could thus have a key role in structuring other infections in natural vertebrate populations by affecting the 'upstream' innate mediators, like toll-like receptors, that are important in initiating immunity. Furthermore, the magnitude of the present result suggests that populations free from immunosuppressive parasites may exist at 'unnaturally' elevated levels of innate immune activation, perhaps leading to an increased risk of immunopathology.


Assuntos
Fatores Imunológicos/imunologia , Murinae/imunologia , Murinae/parasitologia , Parasitos/imunologia , Receptores Toll-Like/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Animais Selvagens/imunologia , Animais Selvagens/parasitologia , Anoplura/imunologia , Interações Hospedeiro-Parasita , Modelos Lineares , Nematospiroides dubius/imunologia , Baço/citologia , Baço/imunologia , Infecções por Strongylida/imunologia
13.
Sci Total Environ ; 747: 141152, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32799018

RESUMO

By determining susceptibility to disease, environment-driven variation in immune responses can affect the health, productivity and fitness of vertebrates. Yet how the different components of the total environment control this immune variation is remarkably poorly understood. Here, through combining field observation, experimentation and modelling, we are able to quantitatively partition the key environmental drivers of constitutive immune allocation in a model wild vertebrate (three-spined stickleback, Gasterosteus aculeatus). We demonstrate that, in natural populations, thermal conditions and diet alone are sufficient (and necessary) to explain a dominant (seasonal) axis of variation in immune allocation. This dominant axis contributes to both infection resistance and tolerance and, in turn, to the vital rates of infectious agents and the progression of the disease they cause. Our results illuminate the environmental regulation of vertebrate immunity (given the evolutionary conservation of the molecular pathways involved) and they identify mechanisms through which immunocompetence and host-parasite dynamics might be impacted by changing environments. In particular, we predict a dominant sensitivity of immunocompetence and immunocompetence-driven host-pathogen dynamics to host diet shifts.


Assuntos
Smegmamorpha , Animais , Imunidade , Imunocompetência , Vertebrados
14.
Sci Rep ; 10(1): 7444, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366957

RESUMO

Individuals vary in their immune response and, as a result, some are more susceptible to infectious disease than others. Little is known about the nature of this individual variation in natural populations, or which components of immune pathways are most responsible, but defining this underlying landscape of variation is an essential first step to understanding the drivers of this variation and, ultimately, predicting the outcome of infection. We describe transcriptome-wide variation in response to a standardised immune challenge in wild field voles. We find that genes (hereafter 'markers') can be categorised into a limited number of types. For the majority of markers, the response of an individual is dependent on its baseline expression level, with significant enrichment in this category for conventional immune pathways. Another, moderately sized, category contains markers for which the responses of different individuals are also variable but independent of their baseline expression levels. This category lacks any enrichment for conventional immune pathways. We further identify markers which display particularly high individual variability in response, and could be used as markers of immune response in larger studies. Our work shows how a standardised challenge performed on a natural population can reveal the patterns of natural variation in immune response.


Assuntos
Arvicolinae/imunologia , Arvicolinae/fisiologia , Sistema Imunitário , Transcriptoma , Animais , Arvicolinae/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Marcadores Genéticos , Imunogenética , Masculino , Prognóstico , RNA-Seq , Análise de Regressão , Transdução de Sinais , Baço/imunologia , Linfócitos T/imunologia
15.
Immunology ; 126(1): 18-27, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19120495

RESUMO

Although the molecules and cells involved in triggering immune responses against parasitic worms (helminths) remain enigmatic, research has continued to implicate expansions of T-helper type 2 (Th2) cells and regulatory T-helper (T(reg)) cells as a characteristic response to these organisms. An intimate association has also emerged between Th2 responses and wound-healing functions. As helminth infections in humans are associated with a strong Th2/T(reg) immunoregulatory footprint (often termed a 'modified Th2' response), plausible links have been made to increased susceptibility to microbial pathogens in helminth-infected populations in the tropics and to the breakdowns in immunological control (allergy and autoimmunity) that are increasing in frequency in helminth-free developed countries. Removal of helminths and their anti-inflammatory influence may also have hazards for populations exposed to infectious agents, such as malaria and influenza, whose worst effects are mediated by excessive inflammatory reactions. The patterns seen in the control of helminth immunity are discussed from an evolutionary perspective. Whilst an inability to correctly regulate the immune system in the absence of helminth infection might seem highly counter-adaptive, the very ancient and pervasive relationship between vertebrates and helminths supports a view that immunological control networks have been selected to function within the context of a modified Th2 environment. The absence of immunoregulatory stimuli from helminths may therefore uncover maladaptations that were not previously exposed to selection.


Assuntos
Evolução Biológica , Helmintos/imunologia , Higiene , Modelos Imunológicos , Animais , Helmintíase/imunologia , Humanos , Imunidade Celular , Células Th2/imunologia
16.
Front Immunol ; 10: 243, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30837993

RESUMO

Natural interactions between the diet, microbiome, and immunity are largely unstudied. Here we employ wild three-spined sticklebacks as a model, combining field observations with complementary experimental manipulations of diet designed to mimic seasonal variation in the wild. We clearly demonstrate that season-specific diets are a powerful causal driver of major systemic immunophenotypic variation. This effect occurred largely independently of the bulk composition of the bacterial microbiome (which was also driven by season and diet) and of host condition, demonstrating neither of these, per se, constrain immune allocation in healthy individuals. Nonetheless, through observations in multiple anatomical compartments, differentially exposed to the direct effects of food and immunity, we found evidence of immune-driven control of bacterial community composition in mucus layers. This points to the interactive nature of the host-microbiome relationship, and is the first time, to our knowledge, that this causal chain (diet → immunity → microbiome) has been demonstrated in wild vertebrates. Microbiome effects on immunity were not excluded and, importantly, we identified outgrowth of potentially pathogenic bacteria (especially mycolic-acid producing corynebacteria) as a consequence of the more animal-protein-rich summertime diet. This may provide part of the ultimate explanation (and possibly a proximal cue) for the dramatic immune re-adjustments that we saw in response to diet change.


Assuntos
Peixes/imunologia , Imunidade Inata/imunologia , Microbiota/imunologia , Animais , Bactérias/imunologia , Dieta , Alimentos , Estações do Ano
17.
Ecol Evol ; 9(21): 12089-12098, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31832146

RESUMO

Immunity is a central component of fitness in wild animals, but its determinants are poorly understood. In particular, the importance of locomotory activity as a constraint on immunity is unresolved. Using a piscine model (Gasterosteus aculeatus), we combined a 25-month observational time series for a wild lotic habitat with an open flume experiment to determine the influence of locomotor activity (countercurrent swimming) on natural variation in immune function. To maximize the detectability of effects in our flume experiment, we set flow velocity and duration (10 cm/s for 48 hr) just below the point at which exhaustion would ensue. Following this treatment, we measured expression in a set of immune-associated genes and infectious disease resistance through a standard challenge with an ecologically relevant monogenean infection (Gyrodactylus gasterostei). In the wild, there was a strong association of water flow with the expression of immune-associated genes, but this association became modest and more complex when adjusted for thermal effects. Our flume experiment, although statistically well-powered and based on a scenario near the limits of swimming performance in stickleback, detected no countercurrent swimming effect on immune-associated gene expression or infection resistance. The field association between flow rate and immune expression could thus be due to an indirect effect, and we tentatively advance hypotheses to explain this. This study clarifies the drivers of immune investment in wild vertebrates; although locomotor activity, within the normal natural range, may not directly influence immunocompetence, it may still correlate with other variables that do.

18.
Sci Rep ; 9(1): 19694, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873085

RESUMO

Women with uncomplicated urinary tract infection (UTI) symptoms are commonly treated with empirical antibiotics, resulting in overuse of antibiotics, which promotes antimicrobial resistance. Available diagnostic tools are either not cost-effective or diagnostically sub-optimal. Here, we identified clinical and urinary immunological predictors for UTI diagnosis. We explored 17 clinical and 42 immunological potential predictors for bacterial culture among women with uncomplicated UTI symptoms using random forest or support vector machine coupled with recursive feature elimination. Urine cloudiness was the best performing clinical predictor to rule out (negative likelihood ratio [LR-] = 0.4) and rule in (LR+ = 2.6) UTI. Using a more discriminatory scale to assess cloudiness (turbidity) increased the accuracy of UTI prediction further (LR+ = 4.4). Urinary levels of MMP9, NGAL, CXCL8 and IL-1ß together had a higher LR+ (6.1) and similar LR- (0.4), compared to cloudiness. Varying the bacterial count thresholds for urine culture positivity did not alter best clinical predictor selection, but did affect the number of immunological predictors required for reaching an optimal prediction. We conclude that urine cloudiness is particularly helpful in ruling out negative UTI cases. The identified urinary biomarkers could be used to develop a point of care test for UTI but require further validation.


Assuntos
Biomarcadores/urina , Infecções Urinárias/diagnóstico , Infecções Urinárias/urina , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Diagnóstico por Computador , Feminino , Humanos , Fatores Imunológicos/urina , Interleucina-1beta/urina , Interleucina-8/urina , Funções Verossimilhança , Lipocalina-2/urina , Aprendizado de Máquina , Metaloproteinase 9 da Matriz/urina , Pessoa de Meia-Idade , Nefelometria e Turbidimetria , Testes Imediatos , Máquina de Vetores de Suporte , Infecções Urinárias/imunologia , Adulto Jovem
19.
Front Immunol ; 9: 582, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29623078

RESUMO

Seasonal patterns in immunity are frequently observed in vertebrates but are poorly understood. Here, we focused on a natural piscine model, the three-spined stickleback (Gasterosteus aculeatus), and asked how seasonal immune allocation is driven by physical variables (time, light, and heat). Using functionally-relevant gene expression metrics as a reporter of seasonal immune allocation, we synchronously sampled fish monthly from the wild (two habitats), and from semi-natural outdoors mesocosms (stocked from one of the wild habitats). This was repeated across two annual cycles, with continuous within-habitat monitoring of environmental temperature and implementing a manipulation of temperature in the mesocosms. We also conducted a long-term laboratory experiment, subjecting acclimated wild fish to natural and accelerated (×2) photoperiodic change at 7 and 15°C. The laboratory experiment demonstrated that immune allocation was independent of photoperiod and only a very modest effect, at most, was controlled by a tentative endogenous circannual rhythm. On the other hand, experimentally-determined thermal effects were able to quantitatively predict much of the summer-winter fluctuation observed in the field and mesocosms. Importantly, however, temperature was insufficient to fully predict, and occasionally was a poor predictor of, natural patterns. Thermal effects can thus be overridden by other (unidentified) natural environmental variation and do not take the form of an unavoidable constraint due to cold-blooded physiology. This is consistent with a context-dependent strategic control of immunity in response to temperature variation, and points to the existence of temperature-sensitive regulatory circuits that might be conserved in other vertebrates.


Assuntos
Sinais (Psicologia) , Peixes/fisiologia , Imunidade , Estações do Ano , Animais , Ritmo Circadiano , Meio Ambiente , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Interação Gene-Ambiente , Imunidade/genética , Transcriptoma
20.
Int J Parasitol ; 48(6): 463-471, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29476867

RESUMO

In contrast to the conditions in most laboratory studies, wild animals are routinely challenged by multiple infections simultaneously, and these infections can interact in complex ways. This means that the impact of a parasite on its host's physiology and fitness cannot be fully assessed in isolation, and requires consideration of the interactions with other co-infections. Here we examine the impact of two common blood parasites in the field vole (Microtus agrestis): Babesia microti and Bartonella spp., both of which have zoonotic potential. We collected longitudinal and cross-sectional data from four populations of individually tagged wild field voles. This included data on biometrics, life history, ectoparasite counts, presence/absence of microparasites, immune markers and, for a subset of voles, more detailed physiological and immunological measurements. This allowed us to monitor infections over time and to estimate components of survival and fecundity. We confirm, as reported previously, that B. microti has a preventative effect on infection with Bartonella spp., but that the reverse is not true. We observed gross splenomegaly following B. microti infection, and an increase in IL-10 production together with some weight loss following Bartonella spp. infection. However, these animals appeared otherwise healthy and we detected no impact of infection on survival or fecundity due to the two haemoparasite taxa. This is particularly remarkable in the case of B. microti which induces apparently drastic long-term changes to spleen sizes, but without major adverse effects. Our work sheds light on the ecologies of these important zoonotic agents, and more generally on the influence that interactions among multiple parasites have on their hosts in the wild.


Assuntos
Arvicolinae/parasitologia , Babesiose/patologia , Infecções por Bartonella/veterinária , Doenças dos Roedores/microbiologia , Doenças dos Roedores/parasitologia , Animais , Babesia microti/isolamento & purificação , Babesiose/parasitologia , Bartonella/isolamento & purificação , Infecções por Bartonella/microbiologia , Infecções por Bartonella/patologia , Coinfecção , Interleucina-10/genética , Interleucina-10/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA