Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 286(20): 18311-9, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21454521

RESUMO

Genetic studies involving zebrafish and mice have demonstrated that the protein Gon4l (Gon4-like) is essential for hematopoiesis. These studies also suggested that Gon4l regulates gene expression during hematopoietic development, yet the biochemical function of Gon4l has not been defined. Here, we describe the identification of factors that interact with Gon4l and may cooperate with this protein to regulate gene expression. As predicted by polypeptide sequence conservation, Gon4l interacted and co-localized with the DNA-binding protein YY1 (Yin Yang 1). Density gradient sedimentation analysis of protein lysates from mouse M12 B cells showed that Gon4l and YY1 co-sediment with the transcriptional co-repressor Sin3a and its functional partner histone deacetylase (HDAC) 1. Consistent with these results, immunoprecipitation studies showed that Gon4l associates with Sin3a, HDAC1, and YY1 as a part of complexes that form in M12 cells. Sequential immunoprecipitation studies demonstrated that Gon4l, YY1, Sin3a, and HDAC1 could all associate as components of a single complex and that a conserved domain spanning the central portion of Gon4l was required for formation of this complex. When targeted to DNA, Gon4l repressed the activity of a nearby promoter, which correlated with the ability to interact with Sin3a and HDAC1. Our data suggest that Sin3a, HDAC1, and YY1 are co-factors for Gon4l and that Gon4l may function as a platform for the assembly of complexes that regulate gene expression.


Assuntos
Regulação da Expressão Gênica/fisiologia , Histona Desacetilase 1/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia , Fator de Transcrição YY1/metabolismo , Animais , Proteínas Correpressoras , Proteínas de Ligação a DNA , Drosophila melanogaster , Células HEK293 , Histona Desacetilase 1/genética , Humanos , Camundongos , Complexos Multiproteicos/genética , Proteínas Repressoras/genética , Complexo Correpressor Histona Desacetilase e Sin3 , Fatores de Transcrição/genética , Fator de Transcrição YY1/genética , Peixe-Zebra
2.
J Exp Med ; 207(7): 1359-67, 2010 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-20530203

RESUMO

A recessive mutation named Justy was found that abolishes B lymphopoiesis but does not impair other major aspects of hematopoiesis. Transplantation experiments showed that homozygosity for Justy prevented hematopoietic progenitors from generating B cells but did not affect the ability of bone marrow stroma to support B lymphopoiesis. In bone marrow from mutant mice, common lymphoid progenitors and pre-pro-B cells appeared normal, but cells at subsequent stages of B lymphopoiesis were dramatically reduced in number. Under culture conditions that promoted B lymphopoiesis, mutant pre-pro-B cells remained alive and began expressing the B cell marker CD19 but failed to proliferate. In contrast, these cells were able to generate myeloid or T/NK precursors. Genetic and molecular analysis demonstrated that Justy is a point mutation within the Gon4-like (Gon4l) gene, which encodes a protein with homology to transcriptional regulators. This mutation was found to disrupt Gon4l pre-mRNA splicing and dramatically reduce expression of wild-type Gon4l RNA and protein. Consistent with a role for Gon4l in transcriptional regulation, the levels of RNA encoding C/EBPalpha and PU.1 were abnormally high in mutant B cell progenitors. Our findings indicate that the Gon4l protein is required for B lymphopoiesis and may function to regulate gene expression during this process.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Linfopoese/genética , Mutação/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Sequência de Bases , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Proteínas de Ligação a DNA , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Masculino , Camundongos , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Células Precursoras de Linfócitos B/citologia , Células Precursoras de Linfócitos B/metabolismo , Biossíntese de Proteínas , Splicing de RNA/genética , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo , Transcrição Gênica
3.
J Biol Chem ; 278(29): 26851-61, 2003 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-12746455

RESUMO

The proliferation and survival of hematopoietic cells is strictly regulated by cytokine growth factors that act through receptors of the Type I cytokine receptor family, including erythropoietin (Epo) and its receptor, EpoR. Mitogenic signaling by these receptors depends on activation of Jak tyrosine kinases. However, other required components of this pathway have not been fully identified. In a screen for proteins that interact with EpoR and Jak2, we identified a novel member of the U-box family of ubiquitin ligases. This receptor-associated ubiquitin ligase, RUL, co-precipitated with EpoR from mammalian cells and mediated ubiquitination of EpoR. Also, endogenously expressed RUL was rapidly and transiently phosphorylated on serine after cytokine treatment of factor-dependent hematopoietic cells. Expression of ubiquitin ligase-deficient mutants of RUL inhibited Epo-induced expression of c-myc and bcl-2, two immediate-early genes normally associated with Epo-induced cell growth. Consistent with that finding, expression of mutant RUL also inhibited Epo-dependent proliferation and survival of factor-dependent cells. Together, these observations suggest that RUL is a required component of mitogenic signaling by EpoR. We also show that RUL is phosphorylated in response to growth factors that act through non-cytokine receptors, suggesting that RUL may function as a common regulator of mitogenesis.


Assuntos
Ligases/metabolismo , Receptores da Eritropoetina/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Clonagem Molecular , Eritropoetina/farmacologia , Humanos , Técnicas In Vitro , Ligases/genética , Dados de Sequência Molecular , Mutagênese , Fosforilação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA