Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 109(11): 1960-1973, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36332611

RESUMO

Sharing genomic variant interpretations across laboratories promotes consistency in variant assertions. A landscape analysis of Australian clinical genetic-testing laboratories in 2017 identified that, despite the national-accreditation-body recommendations encouraging laboratories to submit genotypic data to clinical databases, fewer than 300 variants had been shared to the ClinVar public database. Consultations with Australian laboratories identified resource constraints limiting routine application of manual processes, consent issues, and differences in interpretation systems as barriers to sharing. This information was used to define key needs and solutions required to enable national sharing of variant interpretations. The Shariant platform, using both the GRCh37 and GRCh38 genome builds, was developed to enable ongoing sharing of variant interpretations and associated evidence between Australian clinical genetic-testing laboratories. Where possible, two-way automated sharing was implemented so that disruption to laboratory workflows would be minimized. Terms of use were developed through consultation and currently restrict access to Australian clinical genetic-testing laboratories. Shariant was designed to store and compare structured evidence, to promote and record resolution of inter-laboratory classification discrepancies, and to streamline the submission of variant assertions to ClinVar. As of December 2021, more than 14,000 largely prospectively curated variant records from 11 participating laboratories have been shared. Discrepant classifications have been identified for 11% (28/260) of variants submitted by more than one laboratory. We have demonstrated that co-design with clinical laboratories is vital to developing and implementing a national variant-interpretation sharing effort. This approach has improved inter-laboratory concordance and enabled opportunities to standardize interpretation practices.


Assuntos
Bases de Dados Genéticas , Laboratórios , Humanos , Variação Genética , Austrália , Testes Genéticos
2.
Hum Mol Genet ; 28(4): 598-614, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30335141

RESUMO

We report two unrelated families with multigenerational nonsyndromic intellectual disability (ID) segregating with a recurrent de novo missense variant (c.1543C>T:p.Leu515Phe) in the alkali cation/proton exchanger gene SLC9A7 (also commonly referred to as NHE7). SLC9A7 is located on human X chromosome at Xp11.3 and has not yet been associated with a human phenotype. The gene is widely transcribed, but especially abundant in brain, skeletal muscle and various secretory tissues. Within cells, SLC9A7 resides in the Golgi apparatus, with prominent enrichment in the trans-Golgi network (TGN) and post-Golgi vesicles. In transfected Chinese hamster ovary AP-1 cells, the Leu515Phe mutant protein was correctly targeted to the TGN/post-Golgi vesicles, but its N-linked oligosaccharide maturation as well as that of a co-transfected secretory membrane glycoprotein, vesicular stomatitis virus G (VSVG) glycoprotein, was reduced compared to cells co-expressing SLC9A7 wild-type and VSVG. This correlated with alkalinization of the TGN/post-Golgi compartments, suggestive of a gain-of-function. Membrane trafficking of glycosylation-deficient Leu515Phe and co-transfected VSVG to the cell surface, however, was relatively unaffected. Mass spectrometry analysis of patient sera also revealed an abnormal N-glycosylation profile for transferrin, a clinical diagnostic marker for congenital disorders of glycosylation. These data implicate a crucial role for SLC9A7 in the regulation of TGN/post-Golgi pH homeostasis and glycosylation of exported cargo, which may underlie the cellular pathophysiology and neurodevelopmental deficits associated with this particular nonsyndromic form of X-linked ID.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X/genética , Complexo de Golgi/genética , Deficiência Intelectual/genética , Trocadores de Sódio-Hidrogênio/genética , Ácidos/metabolismo , Animais , Células CHO , Membrana Celular/genética , Cricetinae , Cricetulus , Regulação da Expressão Gênica/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Glicosilação , Complexo de Golgi/metabolismo , Humanos , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Glicoproteínas de Membrana/genética , Mutação de Sentido Incorreto/genética , Transporte Proteico/genética , Transfecção , Proteínas do Envelope Viral/genética , Rede trans-Golgi/genética
3.
Mol Psychiatry ; 24(11): 1748-1768, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-29728705

RESUMO

RLIM, also known as RNF12, is an X-linked E3 ubiquitin ligase acting as a negative regulator of LIM-domain containing transcription factors and participates in X-chromosome inactivation (XCI) in mice. We report the genetic and clinical findings of 84 individuals from nine unrelated families, eight of whom who have pathogenic variants in RLIM (RING finger LIM domain-interacting protein). A total of 40 affected males have X-linked intellectual disability (XLID) and variable behavioral anomalies with or without congenital malformations. In contrast, 44 heterozygous female carriers have normal cognition and behavior, but eight showed mild physical features. All RLIM variants identified are missense changes co-segregating with the phenotype and predicted to affect protein function. Eight of the nine altered amino acids are conserved and lie either within a domain essential for binding interacting proteins or in the C-terminal RING finger catalytic domain. In vitro experiments revealed that these amino acid changes in the RLIM RING finger impaired RLIM ubiquitin ligase activity. In vivo experiments in rlim mutant zebrafish showed that wild type RLIM rescued the zebrafish rlim phenotype, whereas the patient-specific missense RLIM variants failed to rescue the phenotype and thus represent likely severe loss-of-function mutations. In summary, we identified a spectrum of RLIM missense variants causing syndromic XLID and affecting the ubiquitin ligase activity of RLIM, suggesting that enzymatic activity of RLIM is required for normal development, cognition and behavior.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Transtorno da Conduta/genética , Feminino , Genes Ligados ao Cromossomo X , Células HEK293 , Humanos , Recém-Nascido , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Camundongos , Pessoa de Meia-Idade , Mutação , Linhagem , Fatores de Transcrição/genética , Ubiquitinação , Inativação do Cromossomo X , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Am J Hum Genet ; 97(2): 302-10, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26166480

RESUMO

Export of mRNA from the cell nucleus to the cytoplasm is essential for protein synthesis, a process vital to all living eukaryotic cells. mRNA export is highly conserved and ubiquitous. Mutations affecting mRNA and mRNA processing or export factors, which cause aberrant retention of mRNAs in the nucleus, are thus emerging as contributors to an important class of human genetic disorders. Here, we report that variants in THOC2, which encodes a subunit of the highly conserved TREX mRNA-export complex, cause syndromic intellectual disability (ID). Affected individuals presented with variable degrees of ID and commonly observed features included speech delay, elevated BMI, short stature, seizure disorders, gait disturbance, and tremors. X chromosome exome sequencing revealed four missense variants in THOC2 in four families, including family MRX12, first ascertained in 1971. We show that two variants lead to decreased stability of THOC2 and its TREX-complex partners in cells derived from the affected individuals. Protein structural modeling showed that the altered amino acids are located in the RNA-binding domains of two complex THOC2 structures, potentially representing two different intermediate RNA-binding states of THOC2 during RNA transport. Our results show that disturbance of the canonical molecular pathway of mRNA export is compatible with life but results in altered neuronal development with other comorbidities.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Cromossomos Humanos X/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Modelos Moleculares , Mutação de Sentido Incorreto/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Sequência de Aminoácidos , Sequência de Bases , Humanos , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Dados de Sequência Molecular , Linhagem , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Análise de Sequência de DNA , Síndrome
5.
Hum Mol Genet ; 24(25): 7171-81, 2015 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-26443594

RESUMO

Next generation genomic technologies have made a significant contribution to the understanding of the genetic architecture of human neurodevelopmental disorders. Copy number variants (CNVs) play an important role in the genetics of intellectual disability (ID). For many CNVs, and copy number gains in particular, the responsible dosage-sensitive gene(s) have been hard to identify. We have collected 18 different interstitial microduplications and 1 microtriplication of Xq25. There were 15 affected individuals from 6 different families and 13 singleton cases, 28 affected males in total. The critical overlapping region involved the STAG2 gene, which codes for a subunit of the cohesin complex that regulates cohesion of sister chromatids and gene transcription. We demonstrate that STAG2 is the dosage-sensitive gene within these CNVs, as gains of STAG2 mRNA and protein dysregulate disease-relevant neuronal gene networks in cells derived from affected individuals. We also show that STAG2 gains result in increased expression of OPHN1, a known X-chromosome ID gene. Overall, we define a novel cohesinopathy due to copy number gain of Xq25 and STAG2 in particular.


Assuntos
Antígenos Nucleares/genética , Deficiência Intelectual/genética , Proteínas de Ciclo Celular , Cromossomos Humanos X/genética , Variações do Número de Cópias de DNA/genética , Humanos , Masculino , Comportamento Problema , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
J Med Genet ; 52(4): 269-74, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25612912

RESUMO

BACKGROUND: Trichothiodystrophy (TTD) is a group of rare autosomal recessive disorders that variably affect a wide range of organs derived from the neuroectoderm. The key diagnostic feature is sparse, brittle, sulfur deficient hair that has a 'tiger-tail' banding pattern under polarising light microscopy. PATIENTS AND METHODS: We describe two male cousins affected by TTD associated with microcephaly, profound intellectual disability, sparse brittle hair, aged appearance, short stature, facial dysmorphism, seizures, an immunoglobulin deficiency, multiple endocrine abnormalities, cerebellar hypoplasia and partial absence of the corpus callosum, in the absence of cellular photosensitivity and ichthyosis. Obligate female carriers showed 100% skewed X-chromosome inactivation. Linkage analysis and Sanger sequencing of 737 X-chromosome exons and whole exome sequencing was used to find the responsible gene and mutation. RESULTS: Linkage analysis localised the disease allele to a 7.75 Mb interval from Xq23-q25. We identified a nonsense mutation in the highly conserved RNF113A gene (c.901 C>T, p.Q301*). The mutation segregated with the disease in the family and was not observed in over 100,000 control X chromosomes. The mutation markedly reduced RNF113A protein expression in extracts from lymphoblastoid cell lines derived from the affected individuals. CONCLUSIONS: The association of RNF113A mutation with non-photosensitive TTD identifies a new locus for these disorders on the X chromosome. The extended phenotype within this family includes panhypopituitarism, cutis marmorata and congenital short oesophagus.


Assuntos
Códon sem Sentido , Proteínas de Ligação a DNA/genética , Síndromes de Tricotiodistrofia/genética , Adolescente , Sequência de Aminoácidos , Análise Mutacional de DNA , Proteínas de Ligação a DNA/química , Humanos , Masculino , Dados de Sequência Molecular , Linhagem
8.
Hum Mutat ; 36(12): 1197-204, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26350204

RESUMO

To identify genetic causes of intellectual disability (ID), we screened a cohort of 986 individuals with moderate to severe ID for variants in 565 known or candidate ID-associated genes using targeted next-generation sequencing. Likely pathogenic rare variants were found in ∼11% of the cases (113 variants in 107/986 individuals: ∼8% of the individuals had a likely pathogenic loss-of-function [LoF] variant, whereas ∼3% had a known pathogenic missense variant). Variants in SETD5, ATRX, CUL4B, MECP2, and ARID1B were the most common causes of ID. This study assessed the value of sequencing a cohort of probands to provide a molecular diagnosis of ID, without the availability of DNA from both parents for de novo sequence analysis. This modeling is clinically relevant as 28% of all UK families with dependent children are single parent households. In conclusion, to diagnose patients with ID in the absence of parental DNA, we recommend investigation of all LoF variants in known genes that cause ID and assessment of a limited list of proven pathogenic missense variants in these genes. This will provide 11% additional diagnostic yield beyond the 10%-15% yield from array CGH alone.


Assuntos
Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Deficiência Intelectual/genética , Alelos , Estudos de Coortes , Biologia Computacional/métodos , Feminino , Humanos , Padrões de Herança , Masculino , Mutação , Polimorfismo de Nucleotídeo Único
9.
Am J Med Genet A ; 167(6): 1330-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25899669

RESUMO

Isolated mitochondrial respiratory chain complex III deficiency has been described in a heterogeneous group of clinical presentations in children and adults. It has been associated with mutations in MT-CYB, the only mitochondrial DNA encoded subunit, as well as in nine nuclear genes described thus far: BCS1L, TTC19, UQCRB, UQCRQ, UQCRC2, CYC1, UQCC2, LYRM7, and UQCC3. BCS1L, TTC19, UQCC2, LYRM7, and UQCC3 are complex III assembly factors. We report on an 8-year-old girl born to consanguineous Iraqi parents presenting with slowly progressive encephalomyopathy, severe failure to thrive, significant delays in verbal and communicative skills and bilateral retinal cherry red spots on fundoscopy. SNP array identified multiple regions of homozygosity involving 7.5% of the genome. Mutations in the TTC19 gene are known to cause complex III deficiency and TTC19 was located within the regions of homozygosity. Sequencing of TTC19 revealed a homozygous nonsense mutation at exon 6 (c.937C > T; p.Q313X). We reviewed the phenotypes and genotypes of all 11 patients with TTC19 mutations leading to complex III deficiency (including our case). The consistent features noted are progressive neurodegeneration with Leigh-like brain MRI abnormalities. Significant variability was observed however with the age of symptom onset and rate of disease progression. The bilateral retinal cherry red spots and failure to thrive observed in our patient are unique features, which have not been described, in previously reported patients with TTC19 mutations. Interestingly, all reported TTC19 mutations are nonsense mutations. The severity of clinical manifestations however does not specifically correlate with the residual complex III enzyme activities.


Assuntos
Códon sem Sentido , Complexo III da Cadeia de Transporte de Elétrons/deficiência , Insuficiência de Crescimento/genética , Transtornos do Desenvolvimento da Linguagem/genética , Proteínas de Membrana/genética , Doenças Mitocondriais/genética , Encefalomiopatias Mitocondriais/genética , Proteínas Mitocondriais/genética , Adolescente , Adulto , Criança , Consanguinidade , Progressão da Doença , Complexo III da Cadeia de Transporte de Elétrons/genética , Insuficiência de Crescimento/patologia , Insuficiência de Crescimento/fisiopatologia , Feminino , Variação Genética , Genótipo , Homozigoto , Humanos , Lactente , Transtornos do Desenvolvimento da Linguagem/patologia , Transtornos do Desenvolvimento da Linguagem/fisiopatologia , Masculino , Mitocôndrias/genética , Mitocôndrias/patologia , Doenças Mitocondriais/patologia , Doenças Mitocondriais/fisiopatologia , Encefalomiopatias Mitocondriais/patologia , Encefalomiopatias Mitocondriais/fisiopatologia , Linhagem , Fenótipo , Retina/metabolismo , Retina/patologia
10.
Am J Med Genet B Neuropsychiatr Genet ; 162B(1): 24-35, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23184456

RESUMO

The clinical significance of chromosomal microdeletions and microduplications was predicted based on their gene content, de novo or familial inheritance and accumulated knowledge recorded on public databases. A patient group comprised of 247 cases with epilepsy and its common co-morbidities of developmental delay, intellectual disability, autism spectrum disorders, and congenital abnormalities was reviewed prospectively in a diagnostic setting using a standardized oligo-array CGH platform. Seventy-three (29.6%) had copy number variations (CNVs) and of these 73 cases, 27 (37.0%) had CNVs that were likely causative. These 27 cases comprised 10.9% of the 247 cases reviewed. The range of pathogenic CNVs associated with seizures was consistent with the existence of many genetic determinants for epilepsy.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/complicações , Transtornos Globais do Desenvolvimento Infantil/diagnóstico , Transtornos Cognitivos/complicações , Transtornos Cognitivos/diagnóstico , Hibridização Genômica Comparativa , Epilepsia/complicações , Epilepsia/diagnóstico , Adolescente , Adulto , Idoso , Criança , Transtornos Globais do Desenvolvimento Infantil/genética , Pré-Escolar , Deleção Cromossômica , Duplicação Cromossômica/genética , Transtornos Cognitivos/genética , Variações do Número de Cópias de DNA/genética , Epilepsia/genética , Feminino , Aconselhamento Genético , Predisposição Genética para Doença , Humanos , Achados Incidentais , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem
11.
Sci Adv ; 9(18): eade2044, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146135

RESUMO

Pathogenic short tandem repeat (STR) expansions cause over 20 neurodegenerative diseases. To determine the contribution of STRs in sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), we used ExpansionHunter, REviewer, and polymerase chain reaction validation to assess 21 neurodegenerative disease-associated STRs in whole-genome sequencing data from 608 patients with sporadic ALS, 68 patients with sporadic FTD, and 4703 matched controls. We also propose a data-derived outlier detection method for defining allele thresholds in rare STRs. Excluding C9orf72 repeat expansions, 17.6% of clinically diagnosed ALS and FTD cases had at least one expanded STR allele reported to be pathogenic or intermediate for another neurodegenerative disease. We identified and validated 162 disease-relevant STR expansions in C9orf72 (ALS/FTD), ATXN1 [spinal cerebellar ataxia type 1 (SCA1)], ATXN2 (SCA2), ATXN8 (SCA8), TBP (SCA17), HTT (Huntington's disease), DMPK [myotonic dystrophy type 1 (DM1)], CNBP (DM2), and FMR1 (fragile-X disorders). Our findings suggest clinical and pathological pleiotropy of neurodegenerative disease genes and highlight their importance in ALS and FTD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Ataxias Espinocerebelares , Humanos , Demência Frontotemporal/genética , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Expansão das Repetições de DNA/genética , Ataxias Espinocerebelares/genética , Proteína do X Frágil da Deficiência Intelectual/genética
12.
Nat Commun ; 11(1): 4932, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004838

RESUMO

Most genes associated with neurodevelopmental disorders (NDDs) were identified with an excess of de novo mutations (DNMs) but the significance in case-control mutation burden analysis is unestablished. Here, we sequence 63 genes in 16,294 NDD cases and an additional 62 genes in 6,211 NDD cases. By combining these with published data, we assess a total of 125 genes in over 16,000 NDD cases and compare the mutation burden to nonpsychiatric controls from ExAC. We identify 48 genes (25 newly reported) showing significant burden of ultra-rare (MAF < 0.01%) gene-disruptive mutations (FDR 5%), six of which reach family-wise error rate (FWER) significance (p < 1.25E-06). Among these 125 targeted genes, we also reevaluate DNM excess in 17,426 NDD trios with 6,499 new autism trios. We identify 90 genes enriched for DNMs (FDR 5%; e.g., GABRG2 and UIMC1); of which, 61 reach FWER significance (p < 3.64E-07; e.g., CASZ1). In addition to doubling the number of patients for many NDD risk genes, we present phenotype-genotype correlations for seven risk genes (CTCF, HNRNPU, KCNQ3, ZBTB18, TCF12, SPEN, and LEO1) based on this large-scale targeted sequencing effort.


Assuntos
Predisposição Genética para Doença , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fator de Ligação a CCCTC/genética , Estudos de Casos e Controles , Estudos de Coortes , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Feminino , Estudos de Associação Genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Canal de Potássio KCNQ3/genética , Masculino , Mutação , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética
14.
Brain ; 131(Pt 4): 918-27, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18234694

RESUMO

Epilepsy and Mental Retardation limited to Females (EFMR) which links to Xq22 has been reported in only one family. We aimed to determine if there was a distinctive phenotype that would enhance recognition of this disorder. We ascertained four unrelated families (two Australian, two Israeli) where seizures in females were transmitted through carrier males. Detailed clinical assessment was performed on 58 individuals, using a validated seizure questionnaire, neurological examination and review of EEG and imaging studies. Gene localization was examined using Xq22 microsatellite markers. Twenty-seven affected females had a mean seizure onset of 14 months (range 6-36) typically presenting with convulsions. All had convulsive attacks at some stage, associated with fever in 17 out of 27 (63%). Multiple seizure types occurred including tonic-clonic (26), tonic (4), partial (11), absence (5), atonic (3) and myoclonic (4). Seizures ceased at mean 12 years. Developmental progress varied from normal (7), to always delayed (4) to normal followed by regression (12). Intellect ranged from normal to severe intellectual disability (ID), with 67% of females having ID or being of borderline intellect. Autistic (6), obsessive (9) and aggressive (7) features were prominent. EEGs showed generalized and focal epileptiform abnormalities. Five obligate male carriers had obsessional tendencies. Linkage to Xq22 was confirmed (maximum lod 3.5 at = 0). We conclude that EFMR is a distinctive, under-recognized familial syndrome where girls present with convulsions in infancy, often associated with intellectual impairment and autistic features. The unique inheritance pattern with transmission by males is perplexing. Clinical recognition is straightforward in multiplex families due to the unique inheritance pattern; however, this disorder should be considered in smaller families where females alone have seizures beginning in infancy, particularly in the setting of developmental delay. In single cases, diagnosis will depend on identification of the molecular basis.


Assuntos
Epilepsia/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Deficiência Intelectual/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Cromossomos Humanos X/genética , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/genética , Eletroencefalografia , Epilepsia/complicações , Feminino , Ligação Genética , Heterozigoto , Humanos , Deficiência Intelectual/complicações , Masculino , Transtornos Mentais/complicações , Transtornos Mentais/genética , Pessoa de Meia-Idade , Linhagem , Fenótipo
15.
Nat Commun ; 10(1): 4920, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664034

RESUMO

Familial Adult Myoclonic Epilepsy (FAME) is characterised by cortical myoclonic tremor usually from the second decade of life and overt myoclonic or generalised tonic-clonic seizures. Four independent loci have been implicated in FAME on chromosomes (chr) 2, 3, 5 and 8. Using whole genome sequencing and repeat primed PCR, we provide evidence that chr2-linked FAME (FAME2) is caused by an expansion of an ATTTC pentamer within the first intron of STARD7. The ATTTC expansions segregate in 158/158 individuals typically affected by FAME from 22 pedigrees including 16 previously reported families recruited worldwide. RNA sequencing from patient derived fibroblasts shows no accumulation of the AUUUU or AUUUC repeat sequences and STARD7 gene expression is not affected. These data, in combination with other genes bearing similar mutations that have been implicated in FAME, suggest ATTTC expansions may cause this disorder, irrespective of the genomic locus involved.


Assuntos
Proteínas de Transporte/genética , Cromossomos Humanos Par 2/genética , Expansão das Repetições de DNA , Epilepsias Mioclônicas/genética , Íntrons , Adolescente , Adulto , Criança , Pré-Escolar , Mapeamento Cromossômico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Adulto Jovem
16.
Mol Vis ; 14: 721-6, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18431456

RESUMO

PURPOSE: This study aimed to map the genetic locus responsible for a novel X-linked congenital cataract phenotype. METHODS: A large three-generation family with lamellar and nuclear cataract in five affected males was identified. Linkage analysis was conducted by genotyping X-chromosome specific microsatellite markers at an average spacing of 5 cM. Analysis was conducted using the LINKAGE package under an X-linked recessive model. RESULTS: A linkage was detected on Xq24 with the maximum LOD score of 2.53 at theta=0 for DXS1001. The minimal region was defined as 11.5 Mb between markers DXS8055 and DXS8009 through critical recombination events in multiple individuals. CONCLUSIONS: A gene causing this novel congenital cataract phenotype is located on the long arm of the X chromosome.


Assuntos
Catarata/congênito , Catarata/genética , Cromossomos Humanos X/genética , Genes Ligados ao Cromossomo X , Doenças Genéticas Ligadas ao Cromossomo X/genética , Adolescente , Catarata/patologia , Pré-Escolar , Feminino , Humanos , Escore Lod , Masculino , Linhagem , Dente/patologia
17.
Nat Genet ; 49(4): 515-526, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28191889

RESUMO

Gene-disruptive mutations contribute to the biology of neurodevelopmental disorders (NDDs), but most of the related pathogenic genes are not known. We sequenced 208 candidate genes from >11,730 cases and >2,867 controls. We identified 91 genes, including 38 new NDD genes, with an excess of de novo mutations or private disruptive mutations in 5.7% of cases. Drosophila functional assays revealed a subset with increased involvement in NDDs. We identified 25 genes showing a bias for autism versus intellectual disability and highlighted a network associated with high-functioning autism (full-scale IQ >100). Clinical follow-up for NAA15, KMT5B, and ASH1L highlighted new syndromic and nonsyndromic forms of disease.


Assuntos
Transtorno Autístico/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Feminino , Humanos , Masculino , Mutação/genética , Fenótipo
18.
Nat Neurosci ; 20(8): 1043-1051, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28628100

RESUMO

Although de novo missense mutations have been predicted to account for more cases of autism than gene-truncating mutations, most research has focused on the latter. We identified the properties of de novo missense mutations in patients with neurodevelopmental disorders (NDDs) and highlight 35 genes with excess missense mutations. Additionally, 40 amino acid sites were recurrently mutated in 36 genes, and targeted sequencing of 20 sites in 17,688 patients with NDD identified 21 new patients with identical missense mutations. One recurrent site substitution (p.A636T) occurs in a glutamate receptor subunit, GRIA1. This same amino acid substitution in the homologous but distinct mouse glutamate receptor subunit Grid2 is associated with Lurcher ataxia. Phenotypic follow-up in five individuals with GRIA1 mutations shows evidence of specific learning disabilities and autism. Overall, we find significant clustering of de novo mutations in 200 genes, highlighting specific functional domains and synaptic candidate genes important in NDD pathology.


Assuntos
Sequência de Aminoácidos/genética , Transtorno Autístico/genética , Exoma/genética , Predisposição Genética para Doença , Mutação de Sentido Incorreto/genética , Feminino , Humanos , Masculino , Receptores de AMPA/genética , Receptores de Glutamato/genética
19.
Eur J Hum Genet ; 24(11): 1612-1616, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27222290

RESUMO

Intellectual disability (ID) is a clinically complex and heterogeneous disorder, which has variable severity and may be associated with additional dysmorphic, metabolic, neuromuscular or psychiatric features. Although many coding variants have been implicated in ID, identification of pathogenic non-coding regulatory variants has only been achieved in a few cases to date. We identified a duplication of a guanine on chromosome X, NC_000023.10:g.69665044dupG 7 nucleotides upstream of the translational start site in the 5' untranslated region (UTR) of the known ID gene DLG3 that encodes synapse-associated protein 102 (SAP102). The dupG variant segregated with affected status in a large multigenerational family with non-syndromic X-linked ID and was predicted to disrupt folding of the mRNA. When tested on blood cells from the affected individuals, DLG3 mRNA levels were not altered, however, DLG3/SAP102 protein levels were. We also showed by dual luciferase reporter assay that the dupG variant interfered with translation. All currently known pathogenic DLG3 variants are predicted to be null, however the dupG variant likely leads to only a modest reduction of SAP102 levels accounting for the milder phenotype seen in this family.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X/genética , Mutagênese Insercional , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Regiões 5' não Traduzidas , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Cromossomos Humanos X/genética , Feminino , Células HEK293 , Humanos , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/diagnóstico , Pessoa de Meia-Idade , Proteínas Nucleares/metabolismo , Linhagem , Dobramento de RNA , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
20.
Mol Genet Genomic Med ; 3(3): 203-14, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26029707

RESUMO

The Aristaless-related homeobox (ARX) gene is implicated in intellectual disability with the most frequent pathogenic mutations leading to expansions of the first two polyalanine tracts. Here, we describe analysis of the ARX gene outlining the approaches in the Australian and Portuguese setting, using an integrated clinical and molecular strategy. We report variants in the ARX gene detected in 19 patients belonging to 17 families. Seven pathogenic variants, being expansion mutations in both polyalanine tract 1 and tract 2, were identifyed, including a novel mutation in polyalanine tract 1 that expands the first tract to 20 alanines. This precise number of alanines is sufficient to cause pathogenicity when expanded in polyalanine tract 2. Five cases presented a probably non-pathogenic variant, including the novel HGVS: c.441_455del, classified as unlikely disease causing, consistent with reports that suggest that in frame deletions in polyalanine stretches of ARX rarely cause intellectual disability. In addition, we identified five cases with a variant of unclear pathogenic significance. Owing to the inconsistent ARX variants description, publications were reviewed and ARX variant classifications were standardized and detailed unambiguously according to recommendations of the Human Genome Variation Society. In the absence of a pathognomonic clinical feature, we propose that molecular analysis of the ARX gene should be included in routine diagnostic practice in individuals with either nonsyndromic or syndromic intellectual disability. A definitive diagnosis of ARX-related disorders is crucial for an adequate clinical follow-up and accurate genetic counseling of at-risk family members.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA