Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Commun Signal ; 22(1): 120, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347585

RESUMO

BACKGROUND: Breast cancer (BC) is the most frequent tumor entity in women worldwide with a high chance of therapeutic response in early- and non-metastatic disease stages. Among all BC subtypes, triple-negative BC (TNBC) is the most challenging cancer subtype lacking effective molecular targets due to the particular enrichment of cancer stem cells (CSCs), frequently leading to a chemoresistant phenotype and metastasis. The Ubiquitin Specific Peptidase 22 (USP22) is a deubiquitinase that has been frequently associated with a CSC-promoting function and intimately implicated in resistance to conventional therapies, tumor relapse, metastasis and overall poor survival in a broad range of cancer entities, including BC. To date, though, the role of USP22 in TNBC has been only superficially addressed. METHODS: The current study utilized the MMTV-cre, Usp22fl/fl transgenic mouse model to study the involvement of USP22 in the stem cell-like properties of the growing mammary tissue. Additionally, we combined high-throughput transcriptomic analyses with publicly available patient transcriptomic data and utilized TNBC culture models to decipher the functional role of USP22 in the CSC characteristics of this disease. RESULTS: Interestingly, we identified that USP22 promotes CSC properties and drug tolerance by supporting the oxidative phosphorylation program, known to be largely responsible for the poor response to conventional therapies in this particularly aggressive BC subtype. CONCLUSIONS: This study suggests a novel tumor-supportive role of USP22 in sustaining cellular respiration to facilitate the drug-tolerant behavior of HER2+-BC and TNBC cells. Therefore, we posit USP22 as a promising therapeutic target to optimize standard therapies and combat the aggressiveness of these malignancies. Video Abstract.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Respiração Celular , Modelos Animais de Doenças , Recidiva Local de Neoplasia , Neoplasias de Mama Triplo Negativas/patologia , Ubiquitina Tiolesterase
2.
Int J Mol Sci ; 20(1)2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30609838

RESUMO

Remyelination is a central aspect of new multiple sclerosis (MS) therapies, in which one aims to alleviate disease symptoms by improving axonal protection. However, a central problem is mediators expressed in MS lesions that prevent effective remyelination. Bone morphogenetic protein4 (BMP4) inhibits the development of mature oligodendrocytes in cell culture and also blocks the expression of myelin proteins. Additionally, numerous studies have shown that Noggin (SYM1)-among other physiological antagonists of BMP4-plays a prominent role in myelin formation in the developing but also the adult central nervous system. Nonetheless, neither BMP4 nor Noggin have been systematically studied in human MS lesions. In this study, we demonstrated by transcript analysis and immunohistochemistry that BMP4 is expressed by astrocytes and microglia/macrophages in association with inflammatory infiltrates in MS lesions, and that astrocytes also express BMP4 in chronic inactive lesions that failed to remyelinate. Furthermore, the demonstration of an increased expression of Noggin in so-called shadow plaques (i.e., remyelinated lesions with thinner myelin sheaths) in comparison to chronically inactive demyelinated lesions implies that antagonizing BMP4 is associated with successful remyelination in MS plaques in humans. However, although BMP4 is strongly overexpressed in inflammatory lesion areas, its levels are also elevated in remyelinated lesion areas, which raises the possibility that BMP4 signaling itself may be required for remyelination. Therefore, remyelination might be influenced by a small number of key factors. Manipulating these molecules, i.e., BMP4 and Noggin, could be a promising therapeutic approach for effective remyelination.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Proteínas de Transporte/metabolismo , Esclerose Múltipla/patologia , Remielinização , Adulto , Idoso , Astrócitos/citologia , Astrócitos/metabolismo , Proteína Morfogenética Óssea 4/antagonistas & inibidores , Proteína Morfogenética Óssea 4/genética , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Humanos , Masculino , Microglia/citologia , Microglia/metabolismo , Pessoa de Meia-Idade , Proteínas da Mielina/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Substância Branca/metabolismo , Substância Branca/patologia
3.
Brain Pathol ; 30(3): 524-540, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31663645

RESUMO

We established microRNA (miRNA) profiles in gray and white matter multiple sclerosis (MS) lesions and identified seven miRNAs which were significantly more upregulated in the gray matter lesions. Five of those seven miRNAs, miR-330-3p, miR-4286, miR-4488, let-7e-5p, miR-432-5p shared the common target synaptotagmin7 (Syt7). Immunohistochemistry and transcript analyses using nanostring technology revealed a maldistribution of Syt7, with Syt7 accumulation in neuronal soma and decreased expression in axonal structures. This maldistribution could be at least partially explained by an axonal Syt7 transport disturbance. Since Syt7 is a synapse-associated molecule, this maldistribution could result in impairment of neuronal functions in MS patients. Thus, our results lead to the hypothesis that the overexpression of these five miRNAs in gray matter lesions is a cellular mechanism to reduce further endogenous neuronal Syt7 production. Therefore, miRNAs seem to play an important role as modulators of neuronal structures in MS.


Assuntos
Regulação da Expressão Gênica , Substância Cinzenta/patologia , MicroRNAs/genética , Esclerose Múltipla/genética , Sinaptotagminas/genética , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , MicroRNAs/metabolismo , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Lobo Parietal/metabolismo , Lobo Parietal/patologia , Sinaptotagminas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA