Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34833661

RESUMO

By using the stress-impedance (SI) effect of a soft magnetic amorphous FeCuNbSiB alloy, a micromachined force sensor was fabricated and characterized. The alloy was used as a sputtered thin film of 500 nm thickness. To clarify the SI effect in the used material as a thin film, its magnetic and mechanical properties were first investigated. The stress dependence of the magnetic permeability was shown to be caused by the used transducer effect. The sputtered thin film also exhibited a large yield strength of 983 GPa. Even though the fabrication technology for the device is very simple, characterization revealed a gauge factor (GF) of 756, which is several times larger than that achieved with conventional transducer effects, such as the piezoresistive effect. The fabricated device shows great application potential as a tactile sensor.


Assuntos
Magnetismo , Tato , Impedância Elétrica
2.
Polymers (Basel) ; 14(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35215750

RESUMO

For biomedical applications, smart materials that are used as sensors or actuators have to match some criteria, especially bio-compatibility and softness. Smart polymers are candidates that fulfill these two criteria. A sensitivity to compression is created by adding magnetic particles to a compressible foam polymer. A foam-based composite is fabricated for its small Poisson's ratio, which enables significant compression, up to 50%. This large compression induces a change in its magnetic properties, which can be detected using coils. By setting the sensing coils as a compact array of 3 × 3, the sensor successfully detected and localized an applied deformation.

3.
Micromachines (Basel) ; 11(7)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629856

RESUMO

A simple micro-machined pressure sensor, based on the stress-impedance (SI) effect, was fabricated herein using typical micro-fabrication technologies. To sense pressure, a 1-µm thin, soft magnetic metallic film of FeSiB was sputtered and used as a diaphragm. Its electrical response (impedance change) was measured under pressure in a frequency band from 5 to 500 MHz. A lumped-element equivalent electric circuit was used to separate the impedance of the soft magnetic metal from other parasitic elements. The impedance change clearly depended on the applied pressure. It was also shown that the impedance change could be explained by a change in relative permeability, according to the theory of the SI effect. The radial stress in the diaphragm and the relative permeability exhibited a linear relationship. At a measurement frequency of 200 MHz, the largest sensor response, with a gauge factor of 385.7, was found. It was in the same order as the conventional sensors. As the proposed device is very simple, it has the potential for application as a cheap pressure sensor.

4.
Micromachines (Basel) ; 9(4)2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-30424114

RESUMO

A novel surface activation technology for Cu-Cu bonding-based wafer-level vacuum packaging using hot-wire-generated atomic hydrogen treatment was developed. Vacuum sealing temperature at 300 °C was achieved by atomic hydrogen pre-treatment for Cu native oxide reduction, while 350 °C was needed by the conventional wet chemical oxide reduction procedure. A remote-type hot-wire tool was employed to minimize substrate overheating by thermal emission from the hot-wire. The maximum substrate temperature during the pre-treatment is lower than the temperature of Cu nano-grain re-crystallization, which enhances Cu atomic diffusion during the bonding process. Even after 24 h wafer storage in atmospheric conditions after atomic hydrogen irradiation, low-temperature vacuum sealing was achieved because surface hydrogen species grown by the atomic hydrogen treatment suppressed re-oxidation. Vacuum sealing yield, pressure in the sealed cavity and bonding shear strength by atomic hydrogen pre-treated Cu-Cu bonding are 90%, 5 kPa and 100 MPa, respectively, which are equivalent to conventional Cu-Cu bonding at higher temperature. Leak rate of the bonded device is less than 10-14 Pa m³ s-1 order, which is applicable for practical use. The developed technology can contribute to low-temperature hermetic packaging.

5.
Micromachines (Basel) ; 7(12)2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30404406

RESUMO

To increase the yield of the wafer-level Cu-Cu thermo-compression bonding method, certain surface pre-treatment methods for Cu are studied which can be exposed to the atmosphere before bonding. To inhibit re-oxidation under atmospheric conditions, the reduced pure Cu surface is treated by H2/Ar plasma, NH3 plasma and thiol solution, respectively, and is covered by Cu hydride, Cu nitride and a self-assembled monolayer (SAM) accordingly. A pair of the treated wafers is then bonded by the thermo-compression bonding method, and evaluated by the tensile test. Results show that the bond strengths of the wafers treated by NH3 plasma and SAM are not sufficient due to the remaining surface protection layers such as Cu nitride and SAMs resulting from the pre-treatment. In contrast, the H2/Ar plasma⁻treated wafer showed the same strength as the one with formic acid vapor treatment, even when exposed to the atmosphere for 30 min. In the thermal desorption spectroscopy (TDS) measurement of the H2/Ar plasma⁻treated Cu sample, the total number of the detected H2 was 3.1 times more than the citric acid⁻treated one. Results of the TDS measurement indicate that the modified Cu surface is terminated by chemisorbed hydrogen atoms, which leads to high bonding strength.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA