RESUMO
Frataxin deficiency, responsible for Friedreich's ataxia (FRDA), is crucial for cell survival since it critically affects viability of neurons, pancreatic beta cells and cardiomyocytes. In FRDA, the heart is frequently affected with typical manifestation of hypertrophic cardiomyopathy, which can progress to heart failure and cause premature death. A microarray analysis performed on FRDA patient's lymphoblastoid cells stably reconstituted with frataxin, indicated HS-1-associated protein X-1 (HAX-1) as the most significantly upregulated transcript (FC = +2, P < 0.0006). quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) and western blot analysis performed on (I) HEK293 stably transfected with empty vector compared to wild-type frataxin and (II) lymphoblasts from FRDA patients show that low frataxin mRNA and protein expression correspond to reduced levels of HAX-1. Frataxin overexpression and silencing were also performed in the AC16 human cardiomyocyte cell line. HAX-1 protein levels are indeed regulated through frataxin modulation. Moreover, correlation between frataxin and HAX-1 was further evaluated in peripheral blood mononuclear cells (PBMCs) from FRDA patients and from non-related healthy controls. A regression model for frataxin which included HAX-1, group membership and group* HAX-1 interaction revealed that frataxin and HAX-1 are associated both at mRNA and protein levels. Additionally, a linked expression of FXN, HAX-1 and antioxidant defence proteins MnSOD and Nrf2 was observed both in PBMCs and AC16 cardiomyocytes. Our results suggest that HAX-1 could be considered as a potential biomarker of cardiac disease in FRDA and the evaluation of its expression might provide insights into its pathogenesis as well as improving risk stratification strategies.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cardiomiopatia Hipertrófica/patologia , Ataxia de Friedreich/complicações , Regulação da Expressão Gênica , Insuficiência Cardíaca/patologia , Proteínas de Ligação ao Ferro/metabolismo , Miócitos Cardíacos/patologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Idoso , Cardiomiopatia Hipertrófica/etiologia , Cardiomiopatia Hipertrófica/metabolismo , Feminino , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Humanos , Proteínas de Ligação ao Ferro/genética , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Adulto Jovem , FrataxinaRESUMO
The identification of biomarkers for neurodegenerative disorders such as Huntington's disease (HD) is crucial for monitoring disease progression and therapeutic trial outcomes, especially in the pre-manifest disease stage (pre-HD). In a previous study, we observed that leukocyte telomere length (LTL) was strongly correlated with the estimated time to clinical onset in pre-HD subjects. To validate this hypothesis, we designed a follow-up study in which we analyzed LTL in 45 pre-HD stage subjects at baseline (T0) and then again after clinical onset at follow-up (T1); the follow-up interval was about 3 years, and the CAG range was 39-51 repeats; 90 peripheral blood mononuclear cell samples (PBMCs) were obtained from the Enroll-HD biorepository. In pre-HD subjects at T0, LTL was significantly reduced by 22% compared to the controls and by 14% from T0 at T1. No relationship was observed between the LTL and CAG numbers in subjects carrying different CAG repeats at T0 and at T1, suggesting that LTL reduction occurs independently of CAG number in pre-HD subjects. ROC curve analysis was used to test the validity of LTL as a potential biomarker of HD progression and showed that LTL measurement is extremely accurate in discriminating pre-HD subjects from the controls and even pre-HD from manifest HD, thus yielding a robust prognostic value in pre-HD subjects.
Assuntos
Doença de Huntington , Humanos , Doença de Huntington/diagnóstico , Doença de Huntington/genética , Seguimentos , Telômero/genética , Leucócitos Mononucleares , Leucócitos , BiomarcadoresRESUMO
The term Episodic Ataxias (EA) was originally used for a few autosomal dominant diseases, characterized by attacks of cerebellar dysfunction of variable duration and frequency, often accompanied by other ictal and interictal signs. The original group subsequently grew to include other very rare EAs, frequently reported in single families, for some of which no responsible gene was found. The clinical spectrum of these diseases has been enormously amplified over time. In addition, episodes of ataxia have been described as phenotypic variants in the context of several different disorders. The whole group is somewhat confused, since a strong evidence linking the mutation to a given phenotype has not always been established. In this review we will collect and examine all instances of ataxia episodes reported so far, emphasizing those for which the pathophysiology and the clinical spectrum is best defined.
Assuntos
Ataxia/genética , Ataxia/metabolismo , Ataxia/fisiopatologia , Canais de Cálcio/genética , Ataxia Cerebelar/genética , Transportador 1 de Aminoácido Excitatório/genética , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Canal de Potássio Kv1.1/genética , Canal de Potássio Kv1.1/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.2/genéticaRESUMO
Rubinstein-Taybi syndrome (RSTS) is an autosomal-dominant neurodevelopmental disease affecting 1:125,000 newborns characterized by intellectual disability, growth retardation, facial dysmorphisms and skeletal abnormalities. RSTS is caused by mutations in genes encoding for writers of the epigenetic machinery: CREBBP (~ 60%) or its homologous EP300 (~ 10%). No causative mutation is identified in up to 30% of patients. We performed whole-exome sequencing (WES) on eight RSTS-like individuals who had normal high-resolution array CGH testing and were CREBBP- and EP300-mutation -negative, to identify the molecular cause. In four cases, we identified putatively causal variants in three genes (ASXL1, KMT2D and KMT2A) encoding members of the epigenetic machinery known to be associated with the Bohring-Opitz, Kabuki and Wiedemann-Steiner syndromes. Each variant is novel, de novo, fulfills the ACMG criteria and is predicted to result in loss-of-function leading to haploinsufficiency of the epi-gene. In two of the remaining cases, homozygous/compound heterozygous variants in XYLT2 and PLCB4 genes, respectively, associated with spondyloocular and auriculocondylar 2 syndromes and in the latter an additional candidate variant in XRN2, a gene yet unrelated to any disease, were detected, but their pathogenicity remains uncertain. These results underscore the broad clinical spectrum of Mendelian disorders of the epigenetic apparatus and the high rate of WES disclosure of the genetic basis in cases which may pose a challenge for phenotype encompassing distinct syndromes. The overlapping features of distinct intellectual disability syndromes reflect common pathogenic molecular mechanisms affecting the complex regulation of balance between open and closed chromatin.
Assuntos
Sequenciamento do Exoma , Estudos de Associação Genética , Síndrome de Rubinstein-Taybi/diagnóstico , Síndrome de Rubinstein-Taybi/genética , Proteína de Ligação a CREB/genética , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Proteína p300 Associada a E1A/genética , Epigênese Genética , Fácies , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , FenótipoRESUMO
Age at the onset of motor symptoms in Huntington disease (HD) is determined largely by the length of a CAG repeat expansion in HTT but is also influenced by other genetic factors. We tested whether common genetic variation near the mutation site is associated with differences in the distribution of expanded CAG alleles or age at the onset of motor symptoms. To define disease-associated single-nucleotide polymorphisms (SNPs), we compared 4p16.3 SNPs in HD subjects with population controls in a case:control strategy, which revealed that the strongest signals occurred at a great distance from the HD mutation as a result of "synthetic association" with SNP alleles that are of low frequency in population controls. Detailed analysis delineated a prominent ancestral haplotype that accounted for â¼50% of HD chromosomes and extended to at least 938 kb on about half of these. Together, the seven most abundant haplotypes accounted for â¼83% of HD chromosomes. Neither the extended shared haplotype nor the individual local HTT haplotypes were associated with altered CAG-repeat length distribution or residual age at the onset of motor symptoms, arguing against modification of these disease features by common cis-regulatory elements. Similarly, the 11 most frequent control haplotypes showed no trans-modifier effect on age at the onset of motor symptoms. Our results argue against common local regulatory variation as a factor influencing HD pathogenesis, suggesting that genetic modifiers be sought elsewhere in the genome. They also indicate that genome-wide association analysis with a small number of cases can be effective for regional localization of genetic defects, even when a founder effect accounts for only a fraction of the disorder.
Assuntos
Cromossomos Humanos Par 4 , Doença de Huntington/genética , Idade de Início , Alelos , Estudos de Casos e Controles , Efeito Fundador , Estudo de Associação Genômica Ampla/métodos , Haplótipos , Humanos , Mutação , Polimorfismo de Nucleotídeo Único , Repetições de TrinucleotídeosRESUMO
BACKGROUND: Copy number variations (CNVs) can contribute to genetic variation among individuals and/or have a significant influence in causing diseases. Many studies consider new CNVs' effects on protein family evolution giving rise to gene duplicates or losses. "Unsuccessful" duplicates that remain in the genome as pseudogenes often exhibit functional roles. So, changes in gene and pseudogene number may contribute to development or act as susceptibility alleles of diseases. CASE PRESENTATION: We report a de novo heterozygous 271 Kb microdeletion at 8q21.2 region which includes the family of REXO1L genes and pseudogenes in a young man affected by global development delay, progeroid signs, and gastrointestinal anomalies. Molecular and cellular analysis showed that the REXO1L1 gene hemizygosity in a patient's fibroblasts induces genetic instability and increased apoptosis after treatment with different DNA damage-induced agents. CONCLUSIONS: The present results support the hypothesis that low copy gene number within REXO1L1 cluster could play a significant role in this complex clinical and cellular phenotype.
Assuntos
Deficiências do Desenvolvimento/complicações , Loci Gênicos/genética , Síndromes de Malabsorção/complicações , Síndromes de Malabsorção/genética , Família Multigênica/genética , Deleção de Sequência , Adolescente , Apraxias/complicações , Pré-Escolar , Regulação da Expressão Gênica/genética , Humanos , Masculino , Fenótipo , Pseudogenes/genética , Adulto JovemRESUMO
BACKGROUND AND PURPOSE: Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a rare autosomal dominant disorder caused by NOTCH3 mutations, is characterized by vascular smooth muscle and endothelial cells abnormalities, altered vasoreactivity, and recurrent lacunar infarcts. Vasomotor function may represent a key factor for disease progression. Tetrahydrobiopterin, essential cofactor for nitric oxide synthesis in endothelial cells, ameliorates endothelial function. We assessed whether supplementation with sapropterin, a synthetic tetrahydrobiopterin analog, improves endothelium-dependent vasodilation in CADASIL patients. METHODS: In a 24-month, multicenter randomized, double-blind, placebo-controlled trial, CADASIL patients aged 30 to 65 years were randomly assigned to receive placebo or sapropterin 200 to 400 mg BID. The primary end point was change in the reactive hyperemia index by peripheral arterial tonometry at 24 months. We also assessed the safety and tolerability of sapropterin. Analysis was done by intention-to-treat. RESULTS: The intention-to-treat population included 61 patients. We found no significant difference between sapropterin (n=32) and placebo (n=29) in the primary end point (mean difference in reactive hyperemia index by peripheral arterial tonometry changes 0.19 [95% confidence interval, -0.18, 0.56]). Reactive hyperemia index by peripheral arterial tonometry increased after 24 months in 37% of patients on sapropterin and in 28% on placebo; however, after adjustment for age, sex, and clinical characteristics, improvement was not associated with treatment arm. The proportion of patients with adverse events was similar on sapropterin and on placebo (50% versus 48.3%); serious adverse events occurred in 6.3% versus 13.8%, respectively. CONCLUSIONS: Sapropterin was safe and well-tolerated at the average dose of 5 mg/kg/day, but did not affect endothelium-dependent vasodilation in CADASIL patients. CLINICAL TRIAL REGISTRATION URL: https://www.clinicaltrialsregister.eu. Unique identifier: 2007-004370-55.
Assuntos
Biopterinas/análogos & derivados , CADASIL/tratamento farmacológico , Endotélio Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Adulto , Idoso , Biopterinas/farmacologia , Método Duplo-Cego , Feminino , Humanos , Hiperemia/tratamento farmacológico , Masculino , Pessoa de Meia-IdadeRESUMO
To clarify the population history of dentatorubropallidoluysian atrophy (DRPLA) in Italy and to date back the introduction of the mutation, we reconstructed extended haplotypes flanking the CAG repeat in 10 patients of Italian ancestry, analyzing their similarity/dissimilarity as a function of distance from the CAG repeat. Our aim was to compare the hypothesis of a single, recent genealogy connecting all the observed haplotypes with the alternative hypothesis of multiple introductions by more distantly related haplotypes from outer sources. Polymorphic DNA markers were chosen to cover a region of 153 kb flanking the CAG repeat, that is, informative for dating the age of the DNA segment unaffected by recombination. In all patients, an expansion of the ATN1 CAG segment was confirmed residing onto the same narrow haplotype described to be associated with the CAG expansion in the Japanese and Portuguese populations. We also observed the disruption of the DRPLA haplotype at longer distances, on both sides of the CAG. Our results are compatible with a single founder in the last 600 years, most likely before the last 270 years. These estimates for the Sicilian population largely overlap a period in which the Japanese haplotype with the DRPLA mutation could have been introduced by the Portuguese maritime travelers.
Assuntos
Haplótipos/genética , Mutação/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Atrofia , Pareamento de Bases/genética , Feminino , Humanos , Itália , Masculino , Linhagem , Recombinação Genética/genéticaRESUMO
Benign hereditary chorea (BHC) is a rare autosomal dominant condition characterized by early onset, non-progressive chorea, usually caused by mutations in the thyroid transcription factor-1 gene (TITF1). We describe a novel mutation arising de novo in a proband presenting in infancy with delayed walking and ataxia. She later developed chorea, then hypothyroidism and a large cystic pituitary mass. Her daughter presented in infancy with delayed walking and ataxia and went on to develop non-progressive chorea and a hormonally inactive cystic pituitary mass. Mutational analysis of the whole coding region of the TITF1 gene was undertaken and compared with a population study of 160 control subjects. This showed that both affected subjects have a heterozygous A > T substitution at nucleotide 727 of the TITF1 gene changing lysine to a stop codon at residue 211. Genetic analysis of parents and siblings of the proband confirmed that the mutation arose de novo in the proband. The mutated lysine is an evolutionarily highly conserved amino acid in the protein homoeodomain (HD) where most point mutations associated with BHC are located. The range of mutations in BHC is reviewed with particular emphasis on pituitary abnormalities. Cystic pituitary masses and abnormalities of the sella turcica are reported in just 6.4 % of published cases. This is a new nonsense mutation associated with ataxia, benign chorea and pituitary abnormalities which further extends the phenotype of this condition. Mutational screening of TITF1 is important in cases of sporadic or dominant juvenile-onset ataxia, with mild chorea where no other cause is found, particularly if pituitary abnormalities are seen on imaging.
Assuntos
Coreia/genética , Hipotireoidismo/genética , Mutação , Proteínas Nucleares/genética , Doenças da Hipófise/genética , Fatores de Transcrição/genética , Adulto , Coreia/complicações , Coreia/patologia , Análise Mutacional de DNA , Família , Feminino , Humanos , Hipotireoidismo/complicações , Hipotireoidismo/patologia , Pessoa de Meia-Idade , Linhagem , Doenças da Hipófise/complicações , Doenças da Hipófise/patologia , Hipófise/patologia , Fator Nuclear 1 de Tireoide , Tomografia Computadorizada por Raios X , Reino UnidoRESUMO
Huntington's disease (HD) is a neurodegenerative disorder characterized by motor, cognitive, and behavioral disturbances. It is caused by the expansion of the HTT CAG repeat, which is the major determinant of age at onset (AO) of motor symptoms. Aberrant function of N-methyl-D-aspartate receptors and/or overexposure to dopamine has been suggested to cause significant neurotoxicity, contributing to HD pathogenesis. We used genetic association analysis in 1,628 HD patients to evaluate candidate polymorphisms in N-methyl-D-aspartate receptor subtype genes (GRIN2A rs4998386 and rs2650427, and GRIN2B rs1806201) and functional polymorphisms in genes in the dopamine pathway (DAT1 3' UTR 40-bp variable number tandem repeat (VNTR), DRD4 exon 3 48-bp VNTR, DRD2 rs1800497, and COMT rs4608) as potential modifiers of the disease process. None of the seven polymorphisms tested was found to be associated with significant modification of motor AO, either in a dominant or additive model, after adjusting for ancestry. The results of this candidate-genetic study therefore do not provide strong evidence to support a modulatory role for these variations within glutamatergic and dopaminergic genes in the AO of HD motor manifestations.
Assuntos
Doença de Huntington/genética , Polimorfismo Genético , Receptores Dopaminérgicos/genética , Receptores de N-Metil-D-Aspartato/genética , Idade de Início , Catecol O-Metiltransferase/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Estudos de Associação Genética , Humanos , Doença de Huntington/epidemiologia , Vias Neurais/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D4/genéticaRESUMO
Huntington's disease (HD) is an inherited neurodegenerative disorder characterized by motor, cognitive and behavioral disturbances, caused by the expansion of a CAG trinucleotide repeat in the HD gene. The CAG allele size is the major determinant of age at onset (AO) of motor symptoms, although the remaining variance in AO is highly heritable. The rs7665116 SNP in PPARGC1A, encoding the mitochondrial regulator PGC-1α, has been reported to be a significant modifier of AO in three European HD cohorts, perhaps due to affected cases from Italy. We attempted to replicate these findings in a large collection of (1,727) HD patient DNA samples of European origin. In the entire cohort, rs7665116 showed a significant effect in the dominant model (p value = 0.008) and the additive model (p value = 0.009). However, when examined by origin, cases of Southern European origin had an increased rs7665116 minor allele frequency (MAF), consistent with this being an ancestry-tagging SNP. The Southern European cases, despite similar mean CAG allele size, had a significantly older mean AO (p < 0.001), suggesting population-dependent phenotype stratification. When the generalized estimating equations models were adjusted for ancestry, the effect of the rs7665116 genotype on AO decreased dramatically. Our results do not support rs7665116 as a modifier of AO of motor symptoms, as we found evidence for a dramatic effect of phenotypic (AO) and genotypic (MAF) stratification among European cohorts that was not considered in previously reported association studies. A significantly older AO in Southern Europe may reflect population differences in genetic or environmental factors that warrant further investigation.
Assuntos
Proteínas de Choque Térmico/genética , Doença de Huntington/genética , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genética , Adulto , Idade de Início , Estudos de Coortes , Europa (Continente)/epidemiologia , Feminino , Genética Populacional , Humanos , Proteína Huntingtina , Doença de Huntington/epidemiologia , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Expansão das Repetições de TrinucleotídeosRESUMO
Huntington's disease is a neurodegenerative disorder caused by an expanded CAG trinucleotide repeat whose length is the major determinant of age at onset but remaining variation appears to be due in part to the effect of genetic modifiers. GRIK2, which encodes GluR6, a mediator of excitatory neurotransmission in the brain, has been suggested in several studies to be a modifier gene based upon a 3' untranslated region TAA trinucleotide repeat polymorphism. Prior to investing in detailed studies of the functional impact of this polymorphism, we sought to confirm its effect on age at onset in a much larger dataset than in previous investigations. We genotyped the HD CAG repeat and the GRIK2 TAA repeat in DNA samples from 2,911 Huntington's disease subjects with known age at onset, and tested for a potential modifier effect of GRIK2 using a variety of statistical approaches. Unlike previous reports, we detected no evidence of an influence of the GRIK2 TAA repeat polymorphism on age at motor onset. Similarly, the GRIK2 polymorphism did not show significant modifier effect on psychiatric and cognitive age at onset in HD. Comprehensive analytical methods applied to a much larger sample than in previous studies do not support a role for GRIK2 as a genetic modifier of age at onset of clinical symptoms in Huntington's disease.
Assuntos
Códon de Terminação/genética , Doença de Huntington/genética , Receptores de Ácido Caínico/genética , Repetições de Trinucleotídeos/genética , Regiões 3' não Traduzidas/genética , Adolescente , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Alelos , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Adulto Jovem , Receptor de GluK2 CainatoRESUMO
BACKGROUND AND PURPOSE: CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) is a rare genetic disease caused by NOTCH3 gene mutations. A dysfunction in vasoreactivity has been proposed as an early event in the pathogenesis of the disease. The aim of this study was to verify whether endothelium dependent and/or independent function is altered in CADASIL patients with respect to controls. METHODS: Vasoreactivity was studied by a non-invasive pletismographic method in 49 mildly disabled CADASIL patients (30-65 years, 58% male, Rankin scale ≤2) and 25 controls. Endothelium dependent vasodilatation was assessed by reactive hyperaemia (flow mediated dilation-peripheral arterial tone (FMD-PAT)) and endothelium independent vasoreactivity by glyceryl trinitrate (GTN) administration (GTN-PAT). RESULTS: Patients and controls showed comparable age, gender and cardiovascular risk factor distribution. GTN-PAT values were significantly lower in CADASIL patients (1.54 (1.01 to 2.25)) than in controls (1.89 (1.61 to 2.59); p=0.041). FMD-PAT scores did not differ between patients and controls (1.88 (1.57 to 2.43) vs 2.08 (1.81 to 2.58); p=0.126) but 17 CADASIL patients (35%) had FMD-PAT scores below the fifth percentile of controls. FMD-PAT and GTN-PAT values correlated both in controls (ρ=0.648, p<0.001) and CADASIL patients (ρ=0.563, p<0.001). By multivariable logistic regression for clinical and laboratory variables, only GTN-PAT (OR 0.39, 95% CI 0.15 to 0.97; p=0.044) was independently associated with FMD-PAT below the fifth percentile in CADASIL patients. CONCLUSIONS: The impaired vasoreactivity observed in CADASIL patients highlights the fact that both endothelial and smooth muscle functional alterations may already be present in mildly disabled subjects. The improvement in vascular function could be a new target for pharmacological trials in CADASIL patients.
Assuntos
CADASIL/fisiopatologia , Músculo Liso Vascular/fisiopatologia , Adulto , Vasos Sanguíneos/fisiopatologia , Encéfalo/patologia , Estudos de Casos e Controles , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Manometria , Pessoa de Meia-Idade , Neuroimagem , PletismografiaRESUMO
The CACNA1A gene codes for the alpha(1A) pore-forming subunit of Ca(2+) voltage-gated Cav2.1 channels. CACNA1A mutations are responsible for Familial Hemiplegic Migraine (FHM) type 1, Episodic Ataxia (EA) type 2 and Spinocerebellar Ataxia type 6. The structure of the human gene includes, at present, 49 exons; however almost nothing is known about the 5' regulatory region, and there is now evidence suggesting the presence of additional exons at the 3' of the gene. The 892 bp fragment upstream of exon 1 and its deletion mutants were characterised for their transcriptional activity by using luciferase as a reporter gene. The 3' region was analysed by Rapid Amplification of the cDNA 3' End. Both regions were screened for mutations in a series of FHM and EA patients by SSCP and sequencing. At the 5' end of the gene a minimal promoter region was identified within the first 497 bp from ATG. By screening a larger fragment for mutations, the 5 bp deletion (g.-757_-753delCTTTC) was identified in a FHM patient. The deletion significantly increased the transcriptional activity, most likely due to the removal of half a turn of the DNA helix, changing the orientation of downstream binding sites for transcriptional factors. At the 3' end of the gene a new exon 48, followed by a strong poly-A signal, was identified as well as a new splice variant. The 5 bp insertion (g.38429_38430insCTTTT) in this exon was found in an EA patient. The two new regions can open the way for the study of human CACNA1A gene expression regulation and can be sites of mutations associated with FHM or EA phenotypes.
Assuntos
Ataxia/genética , Canais de Cálcio/genética , Éxons/genética , Enxaqueca com Aura/genética , Deleção de Sequência/genética , Análise de Variância , Ataxia/sangue , Linhagem Celular Tumoral , Biologia Computacional/métodos , Análise Mutacional de DNA , Humanos , Itália , Enxaqueca com Aura/sangue , Dados de Sequência Molecular , Neuroblastoma/metabolismo , FenótipoRESUMO
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by an expanded CAG repeat. Though symptom onset commonly occurs at midlife and inversely correlates with the CAG repeat expansion, age at clinical onset and progression rate are variable. In the present study we investigated the relationship between leukocyte telomere length (LTL) and HD development. LTL was measured by real-time PCR in manifest HD patients (HD, nâ¯=â¯62), pre-manifest HD patients (pre-HD, nâ¯=â¯38), and age-matched controls (nâ¯=â¯76). Significant LTL differences were observed between the three groups (pâ¯<â¯.0001), with LTL values in the order: HDâ¯<â¯pre-HDâ¯<â¯controls. The relationship between LTL and age was different in the three groups. An inverse relationship between mean LTL and CAG repeat number was found in the pre-HD (pâ¯=â¯.03). The overall data seem to indicate that after age 30â¯years, LT begins to shorten markedly in pre-HD patients according to CAG number and increasing age, up to the values observed in HD. This very suggestive picture allowed us to hypothesize that in pre-manifest HD, LTL could be a measure of time to clinical HD onset. The possible use of LTL as a reliable biomarker to track HD development and progression was evaluated and discussed.
Assuntos
Doença de Huntington/patologia , Leucócitos/fisiologia , Encurtamento do Telômero/fisiologia , Telômero/genética , Expansão das Repetições de Trinucleotídeos/genética , Adulto , Fatores Etários , Idoso , Análise de Variância , Estudos de Casos e Controles , Progressão da Doença , Feminino , Humanos , Proteína Huntingtina/genética , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Análise de Regressão , Adulto JovemRESUMO
Benign hereditary chorea (BHC) is an autosomal dominant disorder of early onset characterised by non progressive choreic movements with normal cognitive function occasionally associated with hypothyroidism and respiratory problems. Numerous pieces of evidence link BHC with TITF-1/NKX2.1 gene mutations. We studied a patient with a familial benign hereditary chorea and normal thyroid and respiratory function. Sequence analysis of TITF-1 revealed the presence of a heterozygous C>T substitution at nucleotide 532, predicted to change an arginine (CGA) with a stop codon (TGA) at position 178 (R178X). A functional analysis shows that the mutated TTF-1 is not binding DNA, nor activating the canonical thyroid target gene promoter or interfering with the ability of wild type TTF-1 to activate transcription. In addition, the mutated protein is predominantly cytoplasmic, rather than nuclear as in the case of the wild type TTF-1. Thus, we have identified a new mutation in the TTF-1 coding gene in a patient with benign hereditary chorea. The results show that the mutation leads to a haploinsufficiency of TITF-1 and opens the question of genotype/phenotype correlation.
Assuntos
Coreia/genética , Coreia/metabolismo , Predisposição Genética para Doença/genética , Mutação/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Química Encefálica/genética , Núcleo Celular/genética , Coreia/fisiopatologia , Códon sem Sentido/genética , Citoplasma/genética , Análise Mutacional de DNA , Inglaterra , Feminino , Marcadores Genéticos/genética , Genótipo , Haplótipos/genética , Heterozigoto , Humanos , Lactente , Fenótipo , Mutação Puntual/genética , Ratos , Fator Nuclear 1 de TireoideRESUMO
Hereditary spastic paraplegias (HSPs) are a heterogeneous group of neurological disorders characterized primarily by a pyramidal syndrome with lower limb spasticity, which can manifest as pure HSP or associated with a number of neurological or non-neurological signs (i.e., complicated HSPs). The clinical variability of HSPs is associated with a wide genetic heterogeneity, with more than eighty causative genes known. Recently, next generation sequencing (NGS) has allowed increasing genetic definition in such a heterogeneous group of disorders. We report on a 56- year-old man affected by sporadic complicated HSP consisting of a pyramidal syndrome, cerebellar ataxia, congenital cataract, pes cavus, axonal sensory-motor peripheral neuropathy and cognitive decline. Brain MRI showed cerebellar atrophy and thin corpus callosum. By NGS we found a novel homozygous biallelic c.452-1Gâ¯>â¯C mutation in the b-glucosidase 2 gene (GBA2), known to be causative for autosomal recessive hereditary spastic paraplegia type 46 (SPG46). The rarity of this inherited form besides reporting on a novel mutation, expands the genetic and clinical spectrum of SPG46 related HSP.
Assuntos
Mutação/genética , Doenças do Sistema Nervoso Periférico/genética , Paraplegia Espástica Hereditária/genética , beta-Glucosidase/genética , Ataxia Cerebelar/cirurgia , Corpo Caloso/cirurgia , Glucosilceramidase , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Linhagem , Doenças do Sistema Nervoso Periférico/complicações , Paraplegia Espástica Hereditária/diagnósticoRESUMO
Huntington's disease (HD) age of onset (AO) is mainly determined by the length of the CAG repeat expansion in the huntingtin gene. The remaining AO variability has been attributed to other little-known factors. A factor that has been associated with other neurodegenerative diseases is arterial hypertension (AHT). The aim of this study is to evaluate the contribution of AHT to the AO of HD. We used data from a cohort of 630 European HD patients with adult onset collected by the REGISTRY project of the European Huntington's Disease Network. Multiple linear regression and ANOVA, controlling for the CAG repeat number of the expanded allele (CAGexp) of each patient, were performed to assess the association between the AHT condition and the AO of the motor symptoms (mAO). The results showed a significant association between AHT and mAO, especially when we only considered the patients diagnosed with AHT prior to manifesting any HD signs (pre-HD AHT). Remarkably, despite the low number of cases, those patients developed motor symptoms 5-8 years later than normotensive patients in the most frequent CAGexp range (40-44). AHT is an age-related condition and consequently, the age of the patient at the time of data collection could be a confounder variable. However, given that most pre-HD AHT patients included in our study had started treatment with antihypertensive drugs prior to the onset of HD, and that antihypertensive drugs have been suggested to confer a neuroprotective effect in other neurodegenerative diseases, raises the interest in elucidating the impact of AHT and/or AHT treatment in HD age of onset in further studies. A confirmation of our results in a larger sample set would open the possibility to significantly improve HD management.
Assuntos
Doença de Huntington/complicações , Hipertensão/complicações , Idade de Início , Alelos , Feminino , Humanos , Doença de Huntington/epidemiologia , Doença de Huntington/genética , Masculino , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Age at onset of Huntington's disease (HD) is correlated with the size of the abnormal CAG repeat expansion in the HD gene; however, several studies have indicated that other genetic factors also contribute to the variability in HD age at onset. To identify modifier genes, we recently reported a whole-genome scan in a sample of 629 affected sibling pairs from 295 pedigrees, in which six genomic regions provided suggestive evidence for quantitative trait loci (QTL), modifying age at onset in HD. METHODS: In order to test the replication of this finding, eighteen microsatellite markers, three from each of the six genomic regions, were genotyped in 102 newly recruited sibling pairs from 69 pedigrees, and data were analyzed, using a multipoint linkage variance component method, in the follow-up sample and the combined sample of 352 pedigrees with 753 sibling pairs. RESULTS: Suggestive evidence for linkage at 6q23-24 in the follow-up sample (LOD = 1.87, p = 0.002) increased to genome-wide significance for linkage in the combined sample (LOD = 4.05, p = 0.00001), while suggestive evidence for linkage was observed at 18q22, in both the follow-up sample (LOD = 0.79, p = 0.03) and the combined sample (LOD = 1.78, p = 0.002). Epistatic analysis indicated that there is no interaction between 6q23-24 and other loci. CONCLUSION: In this replication study, linkage for modifier of age at onset in HD was confirmed at 6q23-24. Evidence for linkage was also found at 18q22. The demonstration of statistically significant linkage to a potential modifier locus opens the path to location cloning of a gene capable of altering HD pathogenesis, which could provide a validated target for therapeutic development in the human patient.