Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 605(7911): 728-735, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35545675

RESUMO

Immunotherapies have achieved remarkable successes in the treatment of cancer, but major challenges remain1,2. An inherent weakness of current treatment approaches is that therapeutically targeted pathways are not restricted to tumours, but are also found in other tissue microenvironments, complicating treatment3,4. Despite great efforts to define inflammatory processes in the tumour microenvironment, the understanding of tumour-unique immune alterations is limited by a knowledge gap regarding the immune cell populations in inflamed human tissues. Here, in an effort to identify such tumour-enriched immune alterations, we used complementary single-cell analysis approaches to interrogate the immune infiltrate in human head and neck squamous cell carcinomas and site-matched non-malignant, inflamed tissues. Our analysis revealed a large overlap in the composition and phenotype of immune cells in tumour and inflamed tissues. Computational analysis identified tumour-enriched immune cell interactions, one of which yields a large population of regulatory T (Treg) cells that is highly enriched in the tumour and uniquely identified among all haematopoietically-derived cells in blood and tissue by co-expression of ICOS and IL-1 receptor type 1 (IL1R1). We provide evidence that these intratumoural IL1R1+ Treg cells had responded to antigen recently and demonstrate that they are clonally expanded with superior suppressive function compared with IL1R1- Treg cells. In addition to identifying extensive immunological congruence between inflamed tissues and tumours as well as tumour-specific changes with direct disease relevance, our work also provides a blueprint for extricating disease-specific changes from general inflammation-associated patterns.


Assuntos
Neoplasias , Humanos , Imunoterapia , Inflamação , Neoplasias/patologia , Linfócitos T Reguladores , Microambiente Tumoral
2.
J Cell Sci ; 133(5)2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31653781

RESUMO

Interleukin (IL)-15 plays an important role in the communication between immune cells. It delivers its signal through different modes involving three receptor chains: IL-15Rα, IL-2Rß and IL-2Rγc. The combination of the different chains result in the formation of IL-15Rα/IL-2Rß/γc trimeric or IL-2Rß/γc dimeric receptors. In this study, we have investigated the role of the IL-15Rα chain in stabilizing the cytokine in the IL-2Rß/γc dimeric receptor. By analyzing the key amino acid residues of IL-15 facing IL-2Rß, we provide evidence of differential interfaces in the presence or in the absence of membrane-anchored IL-15Rα. Moreover, we found that the anchorage of IL-15Rα to the cell surface regardless its mode of presentation - i.e. cis or trans - is crucial for complete signaling. These observations show how the cells can finely modulate the intensity of cytokine signaling through the quality and the level of expression of the receptor chains.


Assuntos
Epitopos/química , Interleucina-15/química , Complexos Multiproteicos/química , Receptores de Interleucina-15/química , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Humanos , Subunidade beta de Receptor de Interleucina-2/química , Modelos Moleculares , Transdução de Sinais
3.
Cytometry A ; 97(10): 1052-1056, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32978859

RESUMO

This 27-color panel has been validated and optimized to comprehensively profile natural killer (NK) cells isolated from human tumors using a collagenase Type II-based digestion protocol. We confirmed that detection of protein expression by antibodies used in our final panel was not affected during tissue digestion. During this evaluation process, we found that detection of CD56, a biomarker typically used to identify NK cells, was affected substantially by collagenase-based digestion. Thus, our panel is centered around expression of NKp46, which is sufficient to identify NK cells and not affected by the tissue collagenase digestion step. Our panel further includes biomarkers used to extrapolate NK-cell maturation, differentiation, migration, homing potential, and functional state. Our panel is intended to provide in-depth characterization of human NK cells isolated from tissues, which we specifically tested using oral squamous cell carcinomas tissues, but it is compatible with other tissues that can be dissociated with a collagenase Type II-based protocol. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.


Assuntos
Células Matadoras Naturais , Neoplasias , Antígeno CD56 , Citometria de Fluxo , Humanos , Imunofenotipagem , Células Matadoras Naturais/imunologia
4.
J Immunol ; 201(2): 493-506, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29848756

RESUMO

IL-15 is a cytokine playing a crucial role in the function of immune cells, including NK and CD8 T cells. In this study, we demonstrated that in vivo, in mice, IL-15-prestimulated NK cells were no longer able to respond to a second cycle of IL-15 stimulation. This was illustrated by defects in cell maturation, proliferation, and activation, seemingly linked to the environment surrounding NK cells but not related to the presence of CD4 regulatory T cells, TGF-ß, or IL-10. Moreover, NK cells from immunodeficient mice could respond to two cycles of IL-15 stimulation, whereas an adoptive transfer of CD44+CD8+ cells impaired their responsiveness to the second cycle. Conversely, in immunocompetent mice, NK cell responsiveness to a second IL-15 stimulation was restored by the depletion of CD8+ cells. These biological findings refine our understanding of the complex mode of action of NK cells in vivo, and they should be taken into consideration for IL-15-based therapy.


Assuntos
Interleucina-15/imunologia , Células Matadoras Naturais/imunologia , Transferência Adotiva/métodos , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Feminino , Receptores de Hialuronatos/imunologia , Ativação Linfocitária/imunologia , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia
5.
J Immunol ; 198(12): 4563-4568, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28507024

RESUMO

Interleukin 2 and IL-15 are two closely related cytokines, displaying important functions in the immune system. They share the heterodimeric CD122/CD132 receptor to deliver their signals within target cells. Their specificity of action is conferred by their α receptor chains, IL-2Rα and IL-15Rα. By combining an increased affinity for CD122 and an impaired recruitment of CD132, we have generated an original molecule named IL-2Rß/γ (CD122/CD132) inhibitor (BiG), targeting the CD122/CD132 receptor. BiG efficiently inhibited IL-15- and IL-2-dependent functions of primary cells, including CD8 T and NK cells, in vitro and in vivo. We also report a differential dynamic of action of these cytokines by highlighting a major role played by the IL-2Rα receptor. Interestingly, due to the presence of IL-2Rα, BiG had no impact on IL-2-dependent regulatory T cell proliferation. Thus, by acting as a fine switch in the immune system, BiG emphasizes the differential roles of these two cytokines.


Assuntos
Subunidade gama Comum de Receptores de Interleucina/metabolismo , Interleucina-15/imunologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Subunidade beta de Receptor de Interleucina-2/genética , Interleucina-2/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Proliferação de Células , Humanos , Subunidade gama Comum de Receptores de Interleucina/genética , Subunidade gama Comum de Receptores de Interleucina/imunologia , Interleucina-15/antagonistas & inibidores , Interleucina-15/metabolismo , Subunidade alfa de Receptor de Interleucina-15/genética , Subunidade alfa de Receptor de Interleucina-15/imunologia , Subunidade alfa de Receptor de Interleucina-15/metabolismo , Interleucina-2/antagonistas & inibidores , Interleucina-2/metabolismo , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/imunologia , Subunidade beta de Receptor de Interleucina-2/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Camundongos , Ligação Proteica , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia
6.
Int J Mol Sci ; 20(18)2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31547251

RESUMO

Natural Killer (NK) cells are a type of cytotoxic lymphocytes that play an important role in the innate immune system. They are of particular interest for their role in elimination of intracellular pathogens, viral infection and tumor cells. As such, numerous strategies are being investigated in order to potentiate their functions. One of these techniques aims at promoting the function of their activating receptors. However, different observations have revealed that providing activation signals could actually be counterproductive and lead to NK cells' hyporesponsiveness. This phenomenon can occur during the NK cell education process, under pathological conditions, but also after treatment with different agents, including cytokines, that are promising tools to boost NK cell function. In this review, we aim to highlight the different circumstances where NK cells become hyporesponsive and the methods that could be used to restore their functionality.


Assuntos
Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Viroses/imunologia , Animais , Citocinas/imunologia , Humanos , Imunidade Inata , Células Matadoras Naturais/patologia , Células Matadoras Naturais/virologia , Neoplasias/patologia , Neoplasias/virologia , Viroses/patologia , Viroses/virologia , Vírus/imunologia
7.
Heliyon ; 10(7): e28583, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586421

RESUMO

NKG2D and its ligands are critical regulators of protective immune responses controlling infections and cancer, defining a crucial immune signaling axis. Current therapeutic efforts targeting this axis almost exclusively aim at enhancing NKG2D-mediated effector functions. However, this axis can drive disease processes when dysregulated, in particular, driving stem-like cancer cell reprogramming and tumorigenesis through receptor/ligand self-stimulation on tumor cells. Despite complexities with its structure and biology, we developed multiple novel engineered proteins that functionally serve as axis-blocking NKG2D "decoys" and report biochemical, structural, in vitro, and in vivo evaluation of their functionality.

8.
bioRxiv ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38915597

RESUMO

Placentation presents immune conflict between mother and fetus, yet in normal pregnancy maternal immunity against infection is maintained without expense to fetal tolerance. This is believed to result from adaptations at the maternal-fetal interface (MFI) which affect T cell programming, but the identities (i.e., memory subsets and antigenic specificities) of T cells and the signals that mediate T cell fates and functions at the MFI remain poorly understood. We found intact recruitment programs as well as pro-inflammatory cytokine networks that can act on maternal T cells in an antigen-independent manner. These inflammatory signals elicit T cell expression of co-stimulatory receptors necessary for tissue retention, which can be engaged by local macrophages. Although pro-inflammatory molecules elicit T cell effector functions, we show that additional cytokine (TGF-ß1) and metabolite (kynurenine) networks may converge to tune T cell function to those of sentinels. Together, we demonstrate an additional facet of fetal tolerance, wherein T cells are broadly recruited and restrained in an antigen-independent, cytokine/metabolite-dependent manner. These mechanisms provide insight into antigen-nonspecific T cell regulation, especially in tissue microenvironments where they are enriched.

9.
medRxiv ; 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33791720

RESUMO

SARS-CoV-2 infection has caused a lasting global pandemic costing millions of lives and untold additional costs. Understanding the immune response to SARS-CoV-2 has been one of the main challenges in the past year in order to decipher mechanisms of host responses and interpret disease pathogenesis. Comparatively little is known in regard to how the immune response against SARS-CoV-2 differs from other respiratory infections. In our study, we compare the peripheral blood immune signature from SARS-CoV-2 infected patients to patients hospitalized pre-pandemic with Influenza Virus or Respiratory Syncytial Virus (RSV). Our in-depth profiling indicates that the immune landscape in patients infected by SARS-CoV-2 is largely similar to patients hospitalized with Flu or RSV. Similarly, serum cytokine and chemokine expression patterns were largely overlapping. Unique to patients infected with SARS-CoV-2 who had the most critical clinical disease state were changes in the regulatory T cell (Treg) compartment. A Treg signature including increased frequency, activation status, and migration markers was correlated with the severity of COVID-19 disease. These findings are particularly relevant as Tregs are being discussed as a therapy to combat the severe inflammation seen in COVID-19 patients. Likewise, having defined the overlapping immune landscapes in SARS-CoV-2, existing knowledge of Flu and RSV infections could be leveraged to identify common treatment strategies. HIGHLIGHTS: The immune landscapes of hospitalized pre-pandemic RSV and influenza patients are similar to SARS-CoV-2 patientsSerum cytokine and chemokine expression patterns are largely similar between patients hospitalized with respiratory virus infections, including SARS-CoV-2, versus healthy donorsSARS-CoV-2 patients with the most critical disease displayed unique changes in the Treg compartmentadvances in understanding and treating SARS-CoV-2 could be leveraged for other common respiratory infections.

10.
Sci Adv ; 7(46): eabj0274, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34757794

RESUMO

Despite recent studies of immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), little is known about how the immune response against SARS-CoV-2 differs from other respiratory infections. We compare the immune signature from hospitalized SARS-CoV-2­infected patients to patients hospitalized prepandemic with influenza or respiratory syncytial virus (RSV). Our in-depth profiling indicates that the immune landscape in SARS-CoV-2 patients is largely similar to flu or RSV patients. Unique to patients infected with SARS-CoV-2 who had the most critical clinical disease were changes in the regulatory T cell (Treg) compartment. A Treg signature including increased frequency, activation status, and migration markers was correlated COVID-19 severity. These findings are relevant as Tregs are considered for therapy to combat the severe inflammation seen in COVID-19 patients. Likewise, having defined the overlapping immune landscapes in SARS-CoV-2, existing knowledge of flu and RSV infections could be leveraged to identify common treatment strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA