Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brain Res ; 987(2): 144-54, 2003 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-14499958

RESUMO

Administration of 3,4-methylenedioxymethamphetamine (MDMA) or 3,4-methylenedioxyamphetamine (MDA) to rats produces serotonergic nerve terminal degeneration. However, they are not neurotoxic when injected directly into the brain, suggesting the requirement for peripheral metabolism of MDMA to a neurotoxic metabolite. Alpha-methyldopamine (alpha-MeDA) is a major metabolite of MDA. There are indications that a glutathione metabolite of alpha-MeDA and/or 3,4-dihydroxymethamphetamine may be responsible for the neurotoxicity and some of the behavioural effects produced by MDMA and/or MDA. The present study details the synthesis, purification and separation of the 5-(glutathion-S-yl)-alpha-MeDA and 6-(glutathion-S-yl)-alpha-MeDA regioisomers of alpha-MeDA. Incubation of MDA with human liver microsomes demonstrated that production of both glutathione adducts are related to cytochrome P450 2D6 isoform activity. Following intracerebroventricular administration (180 nmol) of either GSH adduct into Dark Agouti or Sprague-Dawley rats only 5-(glutathion-S-yl)-alpha-MeDA produced behavioural effects characterised by hyperactivity, teeth chattering, tremor/trembling, head weaving, splayed posture, clonus and wet dog shakes. Pre-treatment with a dopamine receptor antagonist (haloperidol, 0.25 mg/kg; i.p.) attenuated hyperactivity, teeth chattering, low posture and clonus and potentiated splayed postural effects. These results indicate that MDA can be converted into two glutathione regioisomers by human liver microsomes, but only the 5-(glutathion-S-yl)-alpha-MeDA adduct is behaviourally active in the rat.


Assuntos
3,4-Metilenodioxianfetamina/metabolismo , Comportamento Animal/efeitos dos fármacos , Desoxiepinefrina/análogos & derivados , Desoxiepinefrina/metabolismo , Glutationa/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/metabolismo , 3,4-Metilenodioxianfetamina/química , 3,4-Metilenodioxianfetamina/farmacologia , Animais , Comportamento Animal/fisiologia , Citocromo P-450 CYP2D6/metabolismo , Desoxiepinefrina/química , Desoxiepinefrina/farmacologia , Feminino , Glutationa/química , Glutationa/farmacologia , Humanos , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/química , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Ratos , Ratos Sprague-Dawley , Estereoisomerismo
2.
Nat Prod Commun ; 8(3): 375-80, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23678815

RESUMO

In the annals of biomedical theory perhaps no single class of natural product has enjoyed more ingenious speculation than antioxidants formally aimed at counteracting oxidative insults which are involved in the pathophysiology of Alzheimer's and Parkinson's disease, cancer, amyotrophic lateral sclerosis, skin ageing and wound healing. In pursuing our study of Malaysian traditional medicines with antioxidant properties, we became interested in Acalypha wilkesiana var. macafeana hort., used traditionally to heal wounds. To examine whether Acalypha wilkesiana var. macafeana hort. could suppress oxidation an ethanol extract was tested by conventional chemical in vitro assays i.e., ferric reducing antioxidant potential assay (FRAP), DPPH scavenging assay and beta-carotene bleaching (BCB) assay. To explore whether Acalypha wilkesiana var. macafeana hort. protected cells against oxidative injuries, we exposed human hepatocellular liver carcinoma (HepG2) cells to tert-butylhydroperoxide (t-BHP). In all the aforementioned experiments, the ethanol extracts elicited potent antioxidant and cytoprotective activities. To gain a better understanding of the phytochemical nature of the antioxidant principle involved, five fractions (F1-F5) obtained from the ethanol extract were tested using FRAP, DPPH and BCB assays. Our results provided evidence that F5 was the most active fraction with antioxidant potentials equal to 2.090 +/- 0.307 microg/mL, 0.532 +/- 0.041 microg/mL, 0.032 +/- 0.025 microg/mL in FRAP, DPPH and BCB assay, respectively. Interestingly, F5 protected HepG2 against t-BHP oxidative insults. To further define the chemical identity of the antioxidant principle, we first performed a series of phytochemical tests, followed by liquid-chromatography and mass spectrometry (LC/MS) profiling which showed that the major compound contained in F5 was geraniin. To the best of our knowledge, this is the first report showing that the wound healing property of Acalypha wilkesiana var. macafeana hort. is mediated by a geraniin containing extract. Furthermore, our data leads us to conclude that geraniin could be used as a potential pharmaceutical and/or cosmetic topical agent.


Assuntos
Antioxidantes/química , Etanol/química , Euphorbiaceae/química , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Espectrometria de Massas , Extratos Vegetais/química , Extratos Vegetais/farmacologia , terc-Butil Hidroperóxido/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA