Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Small ; : e2307722, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054783

RESUMO

The theoretical capacity of pristine silicon as anodes for lithium-ion batteries (LIBs) can reach up to 4200 mAh g-1 , however, the low electrical conductivity and the huge volume expansion limit their practical application. To address this challenge, a precursor strategy has been explored to induce the curling of graphene oxide (GO) flakes and the enclosing of Si nanoparticles by selecting protonated chitosan as both assembly inducer and carbon precursor. The Si nanoparticles are dispersed first in a slurry of GO by ball milling, then the resulting dispersion is dried by a spray drying process to achieve instantaneous solution evaporation and compact encapsulation of silicon particles with GO. An Al2 O3 layer is constructed on the surface of Si@rGO@C-SD composites by the atomic layer deposition method to modify the solid electrolyte interface. This strategy enhances obviously the electrochemical performance of the Si as anode for LIBs, including excellent long-cycle stability of 930 mAh g-1 after 1000 cycles at 1000 mA g-1 , satisfied initial Coulomb efficiency of 76.7%, and high rate ability of 806 mAh g-1 at 5000 mA g-1 . This work shows a potential solution to the shortcomings of Si-based anodes and provides meaningful insights for constructing high-energy anodes for LIBs.

2.
Angew Chem Int Ed Engl ; 62(32): e202304434, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37340694

RESUMO

Activation of nitromethane to endow new reactivity is an interesting and meaningful but also challenging topic. Herein, we report an electrochemical activation of nitromethane to serve as both the heterocyclic skeleton and oxime sources for the construction of isoxazoline aldoximes. The isoxazoline aldoximes that are prepared by four steps with the reported strategy are synthesized in a single step from low-cost and readily available nitromethane and olefins with moderate to excellent yields under our electrochemical conditions. The reaction also takes advantage of high atom-economy and E-selectivity. Moreover, the mechanism is studied by control experiments, a kinetic isotope effect (KIE) study, cyclic voltammogram (CV) experiments, and density functional theory (DFT) calculations. The mechanistic results reveal that nitromethane may be activated under electrochemical conditions to deliver a 1,2,5-oxadiazole 2-oxide intermediate, which undergoes [3+2] cycloaddition with olefins to yield isoxazoline aldoximes.

3.
Angew Chem Int Ed Engl ; 62(31): e202304510, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37278913

RESUMO

High-entropy alloy nanoparticles (HEA NPs) have aroused great interest globally with their unique electrochemical, catalytic, and mechanical properties, as well as diverse activity and multielement tunability for multi-step reactions. Herein, a facile low-temperature synthesis method at atmospheric pressure is employed to synthesize Pd-enriched-HEA-core and Pt-enriched-HEA-shell NPs with a single phase of face-centred cubic structure. Interestingly, the lattice of both Pd-enriched-HEA-core and Pt-enriched-HEA-shell enlarge during the formation process of HEA, with tensile strains included in the core and shell of HEA. The as-obtained PdAgSn/PtBi HEA NPs show excellent electrocatalytic activity and durability for methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). The specific (mass) activity of PdAgSn/PtBi HEA NPs for MOR is 4.7 mA cm-2 (2874 mA mg(Pd+Pt) -1 ), about 1.7 (5.9) and 1.5 (4.8) times higher than that of commercial Pd/C and Pt/C catalysts, respectively. Additional to high-entropy effect, Pt sites and Pd sites on the interface of the HEA act synergistically to facilitate the multi-step process towards EOR. This study offers a promising way to find a feasible route for scalable HEA manufacturing with promising applications.

4.
Langmuir ; 38(14): 4287-4294, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35363495

RESUMO

Two-dimensional (2D) nanostructured catalysts have attracted great attention in many important fields, including energy applications and chemical industry. In this study, PdCu nanosheet assemblies (NSAs) have been synthesized and investigated as electrocatalysts for direct ethanol fuel cells in an alkaline medium. A great number of active sites on the nanosheets of PdCu NSAs for ethanol electro-oxidation are exposed, where the electron structures are optimized combined with the second element copper. Electrochemical measurements show that PdCu NSA1 exhibits excellent catalytic activity (2536 mA mg-1) and cyclic stability compared to PdCu NSA2 (1700 mA mg-1) and PdCu NSA3 (1436 mA mg-1), much higher than commercial Pd/C. Kinetics studies on the electrolysis of ethanol suggest that PdCu NSAs should be more favorable at higher catalytic temperatures, higher concentrations of ethanol, and low pH value environments. The unique composition and structures PdCu NSA1 would result in the lowest energy barrier in the rate-controlling step of the ethanol oxidation reaction (EOR), confirmed by density functional theory (DFT). The formation mechanism of PdCu NSAs and their excellent electrocatalytic activity toward EOR have been discussed and analyzed.

5.
Inorg Chem ; 61(26): 10220-10227, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35729745

RESUMO

In recent times, the fabrication of noble metal-based catalysts with controllable morphologies has become a research hotspot. Electrocatalytic devices with excellent catalytic performance and enhanced durability for the ethylene glycol oxidation reaction (EGOR) and the glycerol oxidation reaction (GOR) are significant for commercial direct fuel cells. Herein, a series of PdPb sea urchin-like nanodendrite (ND) structures with controllable molar ratios were synthesized as EGOR and GOR electrocatalysts of high efficiency. The optimized structurally regular Pd3Pb NDs exhibit the best electrocatalytic activity and outstanding stability compared to other samples and commercial Pt/C. In addition, the integrated Pb on Pd3Pb NDs can mitigate the bond energy the intermediates generate and further boost the electrooxidation of the intermediates by supplying enough active sites without considering its intrinsic structure, which is beneficial to the enhanced EGOR and GOR activity and stability. With the assistance of electrochemical measurement, the mechanism of the enhanced alloy was further investigated. This paper presents a promising strategy to fabricate catalysts with stable structures, which will elucidate a very promising approach for developing Pd-based catalysts for further applications in fuel cells.

6.
Molecules ; 27(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35458716

RESUMO

Density functional theory (DFT) calculations have been performed to investigate the interfacial interactions of ionic liquids (ILs) on the α- and ß-phases of phosphorene (P) and arsenene (As). Nine representative ILs based on the combinations of 1-ethyl-3-methylimidazolium ([EMIM]+), N-methylpyridinium ([MPI]+), and trimethylamine ([TMA]+) cations paired to tetrafluoroborate ([BF4]-), trifluoromethanesulfonate ([TFO]-), and chloridion (Cl-) anions were used as adsorbates on the 2D P and As nanosheets with different phases to explore the effect of IL adsorption on the electronic and optical properties of 2D materials. The calculated structure, adsorption energy, and charge transfer suggest that the interaction between ILs and P and As nanosheets is dominated by noncovalent forces, and the most stable adsorption structures are characterized by the simultaneous interaction of the cation and anion with the surface, irrespective of the types of ILs and surfaces. Furthermore, the IL adsorption leads to the larger change in the electronic properties of ß-phase P and As than those of their α-phase counterparts, which demonstrates that the adsorption properties are not only related to the chemical elements, but also closely related to the phase structures. The present results provide insight into the further applications of ILs and phosphorene (arsenene) hybrid materials.

7.
Langmuir ; 37(51): 14930-14940, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34910478

RESUMO

Synthesizing alloyed bimetallic electrocatalysts with a three-dimensional (3D) structure assembly have arouse great interests in electrocatalysis. We synthesized a class of alloyed Pd3Pb/Pd nanosheet assemblies (NSAs) composed of a two-dimensional (2D) sheet structure with adjustable compositions via an oil bath approach at a low temperature. Both the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images reveal the successful formation of the nanosheet structure, where the morphology of Pd3Pb/Pd NSAs can be regulated by adjusting the atomic mole ratio of Pb and Pb metal precursors. The power X-ray diffraction (XRD) pattern shows that Pd3Pb/Pd NSA catalysts are homogeneously alloyed. Electrochemical analysis and the density functional theory (DFT) method demonstrate that the electrocatalytic activity of the alloyed Pd3Pb/Pd NSAs can be improved by the doping of the Pb element. As a result of the addition of element Pb and change of the electron structure, the electrocatalytic activity toward ethanol oxidation of alloyed Pd3Pb/Pd-15 NSA can reach up to 2886 mA mg-1, which is approximately 2.8 times that of the pure Pd NSA counterpart (1020 mA mg-1). The Pd3Pb/Pd NSAs are favorable in a high catalytic temperature, high KOH concentration, and high ethanol concentration.

8.
J Nanosci Nanotechnol ; 19(2): 850-858, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30360162

RESUMO

Tin dioxide (SnO2), with a high theoretical storage capacity of 782 mAhg-1, is a potential alternative anode for rechargeable lithium ion batteries (LIBs). However, its low electronic conductivity and poor stability during cycling (due to a change in volume) hinder its practical applications for energy storage. Composite materials of SnO2-nanocrystal-decorated graphene, which show excellent electrochemical characteristics, were prepared using a one-pot elevated hydrothermal method at 250 °C without subsequent carbonization treatment. The effects of graphene, solvent composition, and temperature on the morphology, structure, and electrochemical properties of the SnO2/graphene composites were investigated using XRD, SEM, TEM, and N2 adsorption-desorption techniques. The as-prepared SnO2/graphene composites deliver a high initial discharge capacity of 1734.1 mAh g-1 at 200 mA g-1 and exhibit a high reversible capacity of 814.7 mAh g-1 even after 70 cycles at a current density of 200 mA g-1. The composites also exhibit a high rate capability of 596 mAh g-1 at 2000 mAg-1, indicating a long cycle life and promising capability when used as anode materials for lithium ion batteries and suggesting that SnO2/graphene composites have wide application prospects in LIBs.

9.
Org Biomol Chem ; 12(12): 1908-18, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24519015

RESUMO

The detailed mechanism of the chiral phosphoric acid-catalyzed diarylation reaction between acetophenone and indole has been investigated by DFT methods and compared with that of the reaction between 2,2,2-trifluoroacetophenone and indole. The calculated results confirm our previous hypothesis that the CF3 group in the ketone plays a perfect double role in activating the substrate and stabilizing the single arylation product of tertiary alcohol. It is also demonstrated that the different ratio of the F-substitution in the CH3 group of methyl ketone (CH3-nFn, n = 0, 1, 2, 3) affects the activation energy of the key dehydration step for the proposed diarylation process differently, and determines whether the subsequent re-arylation proceeds or is being suppressed. The computational prediction that the prohibitive barriers for CF3 and CHF2 ketones in the rate-determining dehydration step for the diarylation process could be overcome at higher reaction temperature has been validated by our additional experiments at 80 °C. Furthermore, the origin of the high enantioselectivity of the chiral phosphoric acid-catalyzed single arylation of trifluoromethyl ketone has been studied with the two-layer ONIOM method. The experimentally observed enantiomeric excess can be successfully rationalized.


Assuntos
Cetonas/química , Ácidos Fosfóricos/química , Teoria Quântica , Catálise , Estrutura Molecular
10.
Nat Commun ; 15(1): 5277, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902274

RESUMO

The synthesis of chiral α-azaheteroaryl oxiranes via enantioselective catalysis is a formidable challenge due to the required complex stereoselectivity and diverse N-heterocyclic structures. These compounds play a crucial role in developing bioactive molecules, where precise chirality significantly influences biological activity. Here we show that using chiral phosphoric acid as a catalyst, our method efficiently addresses these challenges. This technique not only achieves high enantio- and diastereoselectivity but also demonstrates superior chemo- and stereocontrol during the epoxidation of alkenyl aza-heteroarenes. Our approach leverages a synergistic blend of electrostatic and hydrogen-bonding interactions, enabling the effective activation of both substrates and hydrogen peroxide. The resulting chiral oxiranes exhibit enhanced diversity and functionality, aiding the construction of complex chiral azaaryl compounds with contiguous stereocenters. Kinetic and density functional theory studies elucidate the mechanism, highlighting chiral phosphoric acid's pivotal role in this intricate enantioselective process.

11.
Phys Chem Chem Phys ; 15(38): 16183-9, 2013 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-23996092

RESUMO

Our density functional theory (DFT)/time-dependent DFT calculations for the fluoride anion sensor, 5,7-dibromo-8-tert-butyldimethylsilyloxy-2-methylquinoline (DBM), suggested a different sensing mechanism from the experimentally proposed one (Chem. Commun., 2011, 47, 7098). Instead of the formation of fluoride-hydrogen-bond complex (DBMOHF) and excited-state proton transfer mechanism, the theoretical results predicted a sensing mechanism based on desilylation reaction and intramolecular charge transfer (ICT). The fluoride anion reacted with DBM and formed an anion (DBMO), with the ICT causing a red shift in the absorbance and emission spectra of the latter. The calculated vertical excitation energies in the ground and first excited states of both DBM and DBMO, as well as the calculated (1)H NMR spectra, significantly reproduced the experimental measurements, providing additional proofs for our proposed sensing mechanism for DBM.

12.
J Phys Chem A ; 117(13): 2862-72, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23442005

RESUMO

The chemo-, diastereo-, and enantioselectivities in proline and axially chiral amino sulfonamide-catalyzed direct aldol reactions between two enolizable aldehydes with different electronic nature have been studied with the aid of density functional theory (DFT) method. The potential energy profiles for the enamine formation between each aliphatic aldehyde and the catalyst confirm that two subject catalysts can successfully differentiate between 3-methylbutanal as an enamine component and α-chloroaldehydes as a carbonyl component. Transition states associated with the stereochemistry-determining C-C bond-forming step with the enamine intermediate addition to the aldehyde acceptor for proline and chiral amino sulfonamide-promoted aldol reactions are reported. DFT calculations not only provide a good explanation for the formation of the sole cross-aldol product between two aliphatic aldehydes both bearing α-methylene protons but also well reproduce the opposite syn vs anti diastereoselectivities in the chiral amino sulfonamide and proline-catalyzed aldol reactions.


Assuntos
Aldeídos/química , Simulação por Computador , Teoria Quântica , Aminas/química , Catálise , Modelos Moleculares , Prolina/química , Estereoisomerismo , Termodinâmica
13.
Nanomaterials (Basel) ; 13(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37836330

RESUMO

Two-dimensional molybdenum disulfide (MoS2) is considered as a highly promising anode material for lithium-ion batteries (LIBs) due to its unique layer structure, large plane spacing, and high theoretical specific capacity; however, the overlap of MoS2 nanosheets and inherently low electrical conductivity lead to rapid capacity decay, resulting in poor cycling stability and low multiplicative performance. This severely limits its practical application in LIBs. To overcome the above problems, composite fibers with a core//sheath structure have been designed and fabricated. The sheath moiety of MoS2 nanosheets is uniformly anchored by the hydrothermal treatment of the axial of carbon nanofibers derived from an electrospinning method (CNFs//MoS2). The quantity of the MoS2 nanosheets on the CNFs substrates can be tuned by controlling the amount of utilized thiourea precursor. The influence of the MoS2 nanosheets on the electrochemical properties of the composite fibers has been investigated. The synergistic effect between MoS2 and carbon nanofibers can enhance their electrical conductivity and ionic reversibility as an anode for LIBs. The composite fibers deliver a high reversible capacity of 866.5 mA h g-1 after 200 cycles at a current density of 0.5 A g-1 and maintain a capacity of 703.3 mA h g-1 after a long cycle of 500 charge-discharge processes at 1 A g-1.

14.
J Colloid Interface Sci ; 629(Pt B): 511-521, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36174294

RESUMO

The huge volumetric expansion (>300 %) of Si that occurs during the charge-discharge process makes it to have poor cycling ability and weak stable structure. These factors are considered as critical obstacles to the further development of Si as anode for lithium-ion batteries (LIBs). Herein, novel 3D interpenetrating microspheres, i.e., Si@C-CNTs, which consist of silicon nanoparticles interpenetrated with carbon nanotubes (CNTs) and stuck with amorphous carbon (C) have been designed and prepared via a spray-drying assisted approach. As anode of LIBs, Si@C-CNTs microspheres can achieve high silicon loadings of around 86 % and a high initial coulomb efficiency of 80.8 %. The electrodes maintain a reversible specific capacity of 1585.9mAh/g at 500 mA g-1 after 200 cycles, and deliver an excellent rate capability of 756.4 mAh/g at 5 A g-1. The outstanding performance of Si@C-CNTs can be due to their 3D interpenetrating structure and the synergy effect between the CNTs network and amorphous carbon therein. They synergistically act as conductive matrices which significantly improve the conductivity of the composite; they also act binders and reinforcing skeleton which help the composite spheres to have stable structure. Especially, the latter (reinforcing skeleton) alleviates the volumetric effect induced by the expansion and shrinkage of silicon particles during lithiation. The unique architecture provides an ideal model that can be used to design Si-based composite anode for advanced LIBs.

15.
Sci Adv ; 9(21): eadg4561, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37224248

RESUMO

The exploration of ferroelectric phase transitions enables an in-depth understanding of ferroelectric switching and promising applications in information storage. However, controllably tuning the dynamics of ferroelectric phase transitions remains challenging owing to inaccessible hidden phases. Here, using protonic gating technology, we create a series of metastable ferroelectric phases and demonstrate their reversible transitions in layered ferroelectric α-In2Se3 transistors. By varying the gate bias, protons can be incrementally injected or extracted, achieving controllable tuning of the ferroelectric α-In2Se3 protonic dynamics across the channel and obtaining numerous intermediate phases. We unexpectedly discover that the gate tuning of α-In2Se3 protonation is volatile and the created phases remain polar. Their origin, revealed by first-principles calculations, is related to the formation of metastable hydrogen-stabilized α-In2Se3 phases. Furthermore, our approach enables ultralow gate voltage switching of different phases (below 0.4 volts). This work provides a possible avenue for accessing hidden phases in ferroelectric switching.

16.
Nat Commun ; 14(1): 5010, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591882

RESUMO

The sole situation of semi-crystalline structure induced single performance remarkably limits the green cryogels in the application of soft devices due to uncontrolled freezing field. Here, a facile strategy for achieving multifunctionality of cryogels is proposed using total amorphization of polymer. Through precisely lowering the freezing point of precursor solutions with an antifreezing salt, the suppressed growth of ice is achieved, creating an unusually weak and homogenous aggregation of polymer chains upon freezing, thereby realizing the tunable amorphization of polymer and the coexistence of free and hydrogen bonding hydroxyl groups. Such multi-scale microstructures trigger the integrated properties of tissue-like ultrasoftness (Young's modulus <10 kPa) yet stretchability, high transparency (~92%), self-adhesion, and instantaneous self-healing (<0.3 s) for cryogels, along with superior ionic-conductivity, antifreezing (-58 °C) and water-retention abilities, pushing the development of skin-like cryogel electronics. These concepts open an attractive branch for cryogels that adopt regulated crystallization behavior for on-demand functionalities.

17.
Org Biomol Chem ; 10(31): 6333-40, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22735260

RESUMO

The rearrangement mechanisms of the novel Baeyer-Villiger oxidation (BVO) of benzaldehyde and acetaldehyde have been studied using density functional theory methods. All structures associated with the product formation step of the new Criegee intermediate, α-hydroxyalkoxy-λ(3)-bromane, are reported. B3LYP/6-31++G** calculations give a good description for the group shift of these two typical reactants: phenyl shift is easier than hydrogen shift for benzaldehyde; hydrogen migration is more favorable than methyl migration for acetaldehyde. Different mechanisms and various conformers of the novel BVO reaction have been considered for the migration step. Solvent effects and rate constants are also taken into account. The calculated and experimentally observed branching ratios are in good agreement with each other.

18.
Am J Transl Res ; 14(5): 3143-3153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35702129

RESUMO

OBJECTIVE: To determine the effects of WeChat platform-based nursing intervention on the disease control and pregnancy outcomes of patients with gestational diabetes mellitus (GDM). METHODS: A total of 112 patients with GDM treated in our hospital from December 2018 to December 2020 were enrolled, and their clinical data were retrospectively analysed. Among them, 61 pregnant women were given routine nursing as the control group (Con group), and the other 51 were given WeChat platform-based interactive continuous nursing intervention as the observation group (Obs group). The blood glucose (BG) of the two groups before and after nursing was compared, and their self-management level and nursing satisfaction were evaluated. The maternal and infant outcomes of the two groups were also compared. RESULTS: Before nursing, BG and glycosylated hemoglobin (HbA1c) levels in the two groups were comparatively high, without notable difference between the two groups (P>0.05); after nursing, the levels of fasting blood glucose, 2 hour postprandial blood glucose (2h-PG), and HbA1c in the Obs group decreased significantly, and were significantly lower than those in the Con group (P<0.05). Additionally, the two groups were similar in self-management level scores before nursing (P>0.05), while after nursing, the scores of diet management, exercise management, BG monitoring management and foot care management in the Obs group increased and were significantly higher than those in the Con group (P<0.05). The Obs group expressed significantly higher nursing satisfaction than the Con group (χ2=6.078, P<0.05). The total incidence of adverse pregnancy outcome in Obs group was lower than that in Con group (χ2-5.566, P<0.05). According to the analysis of risk factors, older age, pre-pregnancy BMI ≥24 kg/m2, and history of diabetes mellitus were independent risk factors for adverse pregnancy outcomes of pregnant women, while WeChat platform-based interactive continuous nursing was a protective factor against adverse pregnancy outcome (P<0.05). CONCLUSION: WeChat platform-based interactive continuous nursing intervention can help patients master comprehensive self-management skills to achieve good control of GDM, improve their satisfaction toward nursing and lower the risk of adverse outcome.

19.
J Colloid Interface Sci ; 622: 748-758, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35537225

RESUMO

The vanadium dioxide (VO2(D)), with ultra-high theoretical capacitance, has been considered as a boon for electrode materials of advanced supercapacitors (SCs). However, the VO2 has a series of shortcomings such as poor electrical conductivity, severe structural damage, and rapid capacity fading during cycles, resulting in unsatisfactory electrochemical performance. Herein, the Co2+ pre-intercalation and amorphous carbon confined vanadium dioxide (CoxVO2@C) with starfruit-like nanostructure is synthesized on a conductive Ni foam substrate via a versatile and cost-effective method. As a cathode for SCs, the obtained CoxVO2@C not only enables a small amount of Co2+ pre-intercalation layer to offer faster ion diffusion kinetics for VO2, but also utilizes a high-conductivity amorphous carbon to protect VO2 from dissolution in an alkaline electrolyte, thereby exhibiting the ultrahigh specific capacitance up to 4440.0 mF cm-2 at 5 mA cm-2 (525.2 F g-1 at 2 A g-1) and the prominent long-term stability performance of the electrode. Benefited from these excellent characteristics, a high-performance CoxVO2@C//V2O3 hybrid supercapacitor (HSC) device with an operating voltage of 1.7 V is further assembled. The HSC device delivers a superior energy density of 102.3 W h kg-1 at a power density of 6.1 kW kg-1, manifesting its practical feasibility.

20.
J Phys Chem A ; 115(5): 940-7, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21214280

RESUMO

Titanium silicalite-1 (TS-1) is an important catalyst for selective oxidation reactions. However, the nature and structure of the active sites and the mechanistic details of the catalytic reactions over TS-1 have not been well-understood, leaving a continuous debate on the genesis of active sites on the TS-1 surface in the literature. In this work, the location of Si vacancies and [Ti(OSi)(4)] and [Ti(OSi)(3)OH] sites in the MFI (Framework Type Code of ZSM-5 (Zeolite Socony Mobile-Five)) framework has been studied using a full ab initio method with 40T clusters with a Si:Ti molar ratio of 39:1. It was shown that the former four energetically favorable sites for Si vacancies are T6, T12, T4, and T8 and for Ti centers of [Ti(OSi)(4)] are T10, T4, T8 and T11, being partially the same sites. Whether by replacing Si vacancies or substituting the fully coordinated Si sites, the most preferential site for Ti is T10, which indicates that the insertion mechanism does not affect the favorable sites of Ti in the MFI lattice. For the defective [Ti(OSi)(3)OH] sites, it was found that the Si vacancy at T6 with a Ti at its neighboring T9 site (T6-def-T9-Ti pair) is the most energetically favorable one, followed by a T6-def-T5-Ti pair with a small energy gap. These findings are significant to elucidate the nature of the active sites and the mechanism of reactions catalyzed by TS-1 and to design the TS-1 catalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA