Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(21): 6210-6217, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38709107

RESUMO

The spin-orbit coupling (SOC), the dynamics of the nonequilibrium transport process, and the breaking of time-reversal and space-inversion symmetries have been regarded as key factors for the emergence of chirality-induced spin selectivity (CISS) and chirality-dependent spin currents in helix molecules. In this work, we demonstrated the generation of persistent CISS currents in various circular single-stranded DNAs and 310-helix proteins for the first time, regardless of whether an external magnetic flux is applied or not. This new CISS effect presents only in equilibrium transport processes, distinct from the traditional CISS observed in nonequilibrium transport processes and linear helix molecules; we term it as the PCISS effect. Notably, PCISS manifests irrespective of whether the SOC is chirality-driven or stems from heavy-metal substrates, making it an efficient way to generate chirality-locked pure spin currents. Our research establishes a novel paradigm for examining the underlying physics of the CISS effect.

2.
J Am Chem Soc ; 145(14): 7869-7878, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36926870

RESUMO

Two-dimensional (2D) semiconductors (SCs) integrated with two or more functions are the cornerstone for constructing multifunctional nanodevices but remain largely limited. Here, by tuning the spin state of organic linkers and the symmetry/topology of crystal lattices, we predict a class of unprecedented multifunctional SCs in 2D Cr(II) five-membered heterocyclic metal organic frameworks that simultaneously possess auxetic effect, room-temperature ferrimagnetism, chiral ferroelectricity (FE), electrically reversible spin polarization, and topological nodal lines/points. Taking 2D Cr(TDZ)2 (TDZ = 1.2.5-thiadiazole) as an exemplification, the auxetic effect is produced by the antitetra-chiral lattice structure. The high temperature ferrimagnetism originates from the strong d-p direct magnetic exchange interaction between Cr cations and TDZ doublet radical anions. Meanwhile, the clockwise-counterclockwise alignment of TDZ's dipoles results in unique 2D chiral FE with atomic-scale vortex-antivortex states. 2D Cr(TDZ)2 is an intrinsic bipolar magnetic SC where half-metallic conduction with switchable spin-polarization direction can be induced by applying a gate voltage. In addition, the symmetry of the little group C4 of the lattice structure endows 2D Cr(TDZ)2 with topological nodal lines and a quadratic nodal point in the Brillouin zone near the Fermi level.

3.
Nanotechnology ; 32(24): 245703, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33755594

RESUMO

Device miniaturization and low-energy dissipation are two urgent requirements in future spintronics devices. The narrowest zigzag graphene nanoribbons (ZGNRs), which are composed of just two coupled carbon-atom chains connected with carbon tetragons, are promising candidates that meet both of the above requirements well. Using the first-principles calculations combined with non-equilibrium Green's function approach, thermal spin-dependent transport through this kind of narrow ZGNR is investigated, and several exotic thermal spin-resolved transport properties are uncovered: (i) when an external magnetic field is applied, the ZGNRs are transited from the intrinsic semiconducting to the metallic state, and the thermal colossal magnetoresistance effect occurs with order of magnitudes up to 104 at room temperature; (ii) the thermal spin-dependent currents display a thermal negative differential resistance effect, and a well-defined spin-Seebeck effect (SSE) together with a pure thermal spin current occurs; and (iii) under suitable device temperature settings, a nearly perfect spin-filtering effect occurs in these narrowest ZGNRs. The theoretical results not only uncover the narrowest nanoribbon structures to realize the SSE and other inspiring thermal spin transport features, but also push carbon-based material candidates towards thermoelectric conversion device applications.

4.
Phys Chem Chem Phys ; 22(34): 19100-19107, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32808610

RESUMO

By using nonequilibrium molecular dynamics, thermal transport through a series of parallel step-like graphene nanoribbon (GNR) junctions is investigated. The theoretical results show that the thermal current flows preferentially from wide GNRs to narrow ones, displaying a pronounced thermal rectification effect. Moreover, several step-like GNR-based devices are designed, and the thermally driven spin-dependent currents are calculated by using density functional theory combined with the nonequilibrium Green's function approach. We find that thermal spin-dependent currents with opposite flow directions are generated when a temperature gradient is applied along the GNRs, indicating the occurrence of a spin-dependent Seebeck effect (SDSE). More interestingly, a negative differential SDSE occurs in the thermal spin currents, and the odd and even law appears in the spin-dependent currents, thermopowers and thermoelectric conversion efficiencies. Our theoretical results indicate that the parallel step-like GNRs are potential candidates to design spin caloritronics devices hosting thermal rectification and multiple thermal-spin transport functionalities.

5.
Phys Chem Chem Phys ; 19(39): 27132-27139, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28967009

RESUMO

By using the first-principle calculations combined with the non-equilibrium Green's function approach, we have studied spin caloritronic properties of graphene nanoribbons (GNRs) with different edge defects. The theoretical results show that the edge-defected GNRs with sawtooth shapes can exhibit spin-dependent currents with opposite flowing directions by applying temperature gradients, indicating the occurrence of the spin-dependent Seebeck effect (SDSE). The edge defects bring about two opposite effects on the thermal spin currents: the enhancement of the symmetry of thermal spin-dependent currents, which contributes to the realization of pure thermal spin currents, and the decreasing of the spin thermoelectric conversion efficiency of the devices. It is fortunate that applying a gate voltage is an efficient route to optimize these two opposite spin thermoelectric properties towards realistic device applications. Moreover, due to the existence of spin-splitting band gaps, the edge-defected GNRs can be designed as spin-dependent Seebeck diodes and rectifiers, indicating that the edge-defected GNRs are potential candidates for room-temperature spin caloritronic devices.

6.
Nanotechnology ; 27(50): 505201, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-27841158

RESUMO

We report a new design of spin-Seebeck diode using two-dimensional spin semiconductors such as sawtooth-like (ST) silicence nanoribbons (SiNRs), to generate unidirectional spin currents with a temperature gradient. ST SiNRs have subbands with opposite spins across the Fermi level and hence the flow of thermally excited carriers may produce a net spin current but not charge current. Moreover, we found that even-width ST SiNRs display a remarkable negative differential thermoelectric resistance due to a charge-current compensation mechanism. In contrast, odd-width ST SiNRs manifest features of a thermoelectric diode and can be used to produce both charge and spin currents with temperature gradient. These findings can be extended to other spin semiconductors and open the door for designs of new materials and spin caloritronic devices.

7.
Phys Chem Chem Phys ; 18(18): 12742-7, 2016 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-27098900

RESUMO

The spin-Seebeck effect (SSE), the central topic of spin caloritronics, provides a new direction for future low power consumption technology. To realize device applications of SSE, a spin-Seebeck diode (SSD) with a negative differential SSE is very desirable. To this end, we constructed a spin caloritronics device that was composed of a ferromagnetic double-single-hydrogen-terminated zigzag silicene nanoribbon (ZSiNR-H2-H) and an antiferromagnetic double-double-hydrogen-terminated zigzag silicene nanoribbon (ZSiNR-H2-H2). By using ab initio calculations combined with nonequilibrium Green's function technique, we found that thermally driven spin current through the heterojunction featured the SSD effect and negative differential SSE. The former originates from the asymmetrical thermal-driven conducting electrons and holes, and the latter ascribes to the thermal spin compensation effect. Their physical mechanisms are much different from the previous ones mainly relying on the spin-wave excitations in the interface between metals and magnetic insulators, supporting our study that puts forward a new route to realize the SSD with a negative differential SSE.

8.
Nanotechnology ; 26(48): 485703, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26559504

RESUMO

Current-induced forces can excite molecules, polymers and other low-dimensional materials, which in turn leads to an effective gate voltage through Holstein interaction. Here, by taking a short asymmetric DNA junction as an example, and using the Langevin approach, we find that when suppression of charge transport by the effective gate voltage surpasses the current increase from an elevated voltage bias, the current-voltage (I-V) curves display strong negative differential resistance (NDR) and perfect current-switching characteristics. The asymmetric DNA chain differs in mechanical stability under inverse voltages and the I-V curve is asymmetric about inverse biases, which can be used to understand recent transport experiments on DNA chains, and meanwhile provides a new strategy to realize NDR in molecular junctions and other low-dimensional quantum systems.

9.
Phys Chem Chem Phys ; 17(16): 11077-87, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25826287

RESUMO

We report a theoretical study highlighting the thermoelectric properties of biological and synthetic DNA molecules. Based on an effective tight-binding model of duplex DNA and by using the nonequilibrium Green's function technique, the thermal conductance, electrical conductance, Seebeck coefficient and thermoelectric figure of merit in the system are numerically calculated by varying the asymmetries of energies and electronic hoppings in the backbone sites to simulate the environmental complications and fluctuations. We find that due to the multiple transport paths in the DNA molecule, the Fano antiresonance occurs, and enhances the Seebeck coefficient and the figure of merit. When the energy difference is produced in every opposite backbone site, the Dicke effect appears. This effect gives rise to a semiconducting-metallic transition, and enhances the thermoelectric efficiency of the DNA molecule remarkably. Moreover, as the Fano antiresonance point is close to the Dicke resonance one, a giant enhancement in the thermoelectric figure of merit in the DNA molecule has been found. These results provide a scenario to obtain effective routes to enhance the thermoelectric efficiency in the DNA molecules, and suggest perspectives for future experiments intending to control the thermoelectric transport in DNA-like nanodevices.


Assuntos
DNA/química , Condutividade Elétrica , Conformação de Ácido Nucleico , Temperatura , Modelos Moleculares
10.
Nanotechnology ; 25(22): 225201, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24806590

RESUMO

We propose practical designs to realize topological field-effect quantum transistors in an HgTe nanoribbon with an inverted band structure. Our theoretical calculations show that, as a strip-shape top gate is placed on the HgTe nanoribbon and with an increasing gate voltage, two new conductance channels develop in the HgTe nanoribbon and are localized to the lattice sites neighboring the boundaries of the gate, leading to an additional quantization of the conductance of 2e(2)/h. The quantum states in the new channels are not only robust against a short-range Anderson disorder, but can also couple with the intrinsic helical edge states in the boundaries of the HgTe nanoribbon to open a gap in the energy spectrum, indicating their topological characteristics. More importantly, the newly developed conductance channels can be turned on or off easily by adjusting the gate voltage. The proposal of controllable topological edge states produced by the gate voltage opens a new route for future topological field-effect quantum transistors in nanoelectronics and spintronics.

11.
Phys Chem Chem Phys ; 16(33): 17493-8, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25019693

RESUMO

Spin caloritronics with a combination of spintronics and thermoelectrics has potential applications in future information science and opens a new direction in the development of multi-functional materials. Based on density functional theory and the nonequilibrium Green's function method, we calculate thermal spin-dependent transport through a zigzag silicon carbide nanoribbon (ZSiCNR), which is a heterojunction consisting of a left electrode (ZSiC-2H1H) and right electrode terminated (ZSiC-1H1H) by hydrogen. Our results show that when the temperature in the left contact increases over a critical value, the thermal spin-down current increases remarkably from zero, while the thermal spin-up current remains zero in the total-temperature region, indicating that a perfect thermal spin filter together with a perfect spin switcher is obtained. Furthermore, the thermal spin current shows a negative differential resistance effect and quantum oscillation behaviors. These results suggest that the zigzag SiC nanoribbon proposed by us can be designed as a highly-efficient spin caloritronics device with multiple functionalities.

12.
Mater Horiz ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39143942

RESUMO

Power dissipation, a fundamental limitation for realizing high-performance electronic devices, may be effectively reduced by an external supply voltage. However, a small supply voltage simultaneously brings another serious challenge, that is, a remarkable device inability in transistors. To deal with this issue, we propose a new transistor design based on the metal-semiconductor phase transition in a AsGeC3 monolayer, which provides a switching mechanism of band-to-band tunneling at on- and off-states by gate-voltage modulation. Our first-principles calculations uncover that the monolayer AsGeC3 field-effect transistors (FETs) with gate lengths of 5, 4, and 3 nm may meet well the requirements for on-state current (Ion), power dissipation (PDP), and delay period (τ) as outlined by the International Technology Roadmap for Semiconductors (ITRS) in 2013 to achieve higher performance by the year 2028. Importantly, high performances are achieved only under a very low supply voltage (VDD = 0.05/0.10 V). Significantly, the AsGeC3 FETs exhibit remarkably lower values of both PDP and τ than those of nearly all the transistors reported up to date. These novel 2D metal-semiconductor phase transition-based FETs open up a new door for designing next-generation low-power electronic devices.

13.
J Chem Phys ; 138(15): 154707, 2013 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-23614436

RESUMO

We design isolated molecular nanowires composed of thiophene oligomers sandwiched between two one-dimensional gold electrodes. Electronic transport through the molecular junctions with two interface geometries is studied by performing the first principles calculations based on density functional theory and nonequilibrium Green's function. The current-voltage (I-V) curves of the molecular wires display an unexpected negative differential resistance and rectifying behaviors along with the oscillation effects, different from other theoretical and experimental studies about the analogous thiophene devices. The significant difference is attributed to the design of the one-dimensional gold electrodes with large enough vacuum layer in transverse direction in order to suppress the interaction between wires. Such transport behaviors indicate that the thiophene molecular device would be an important candidate in future molecular electronics.

14.
J Phys Chem Lett ; 14(49): 11076-11083, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38048754

RESUMO

Chirality-induced spin selectivity (CISS) effect in straight helical molecules has received intense studies in past decade; however, the CISS effect in circular helical molecules (CHMs) has still rarely been explored. Here, we have constructed single CHMs having chirality-induced spin-orbit coupling (SOC) and connected by two nonmagnetic leads and successfully gained the required conditions for CISS effect occurring in CHMs for the first time. Our results uncover that only when the CHMs form a closed loop and when the lattice positions are coupled asymmetrically with both leads does the CISS effect occur. More importantly, the CISS-associated spin-dependent destructive and constructive quantum interference (QI) together with their phase transition appears in CHMs. The combination of CISS effect and spin-dependent QI phenomena opens up a new door to understand the underlying physics of the CISS effect in helical molecules.

15.
Nanoscale ; 15(48): 19726-19734, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38047474

RESUMO

To overcome the scaling restriction on silicon-based field-effect transistors (FETs), two-dimensional (2D) transition metal dichalcogenides (TMDs) have been strongly proposed as alternative materials. To explore the device performance limit of TMD-based FETs, in this work, the ab initio quantum transport approach is utilized to study the transport properties of monolayer VTe2/WTe2 heterojunction-based FETs possessing double gates (DGs) with a 5 nm gate length (Lg). Our theoretical simulations demonstrate that the DG-cold-source VTe2/WTe2 FETs with a 5 nm Lg and 2 or 3 nm proper underlap (UL) meet the basic requirements of the on-state current (Ion), power dissipation (PDP), and delay time (τ) for the 2028 needs of the International Technology Roadmap for Semiconductor (ITRS) 2013, which ensures their high-performance and low-power-dissipation device applications. Moreover, the DG-cold-source VTe2/WTe2-based FETs with a 3 nm Lg and 2 or 3 nm UL meet the high-performance requirements of Ion, τ, and PDP for the 2028 needs of ITRS 2013. Additionally, by further considering the negative capacitance technology in devices, the parameters τ, Ion, and PDP of the VTe2/WTe2-based FETs with a 1 nm Lg and 3 nm UL meet well with the 2028 needs for ITRS 2013 towards high-performance device applications. Our theoretical results uncover that the 2D DG-cold-source VTe2/WTe2 FETs can be used as a new kind of promising material candidate to drive the scaling of Moore's law down to 1 nm.

16.
Adv Sci (Weinh) ; 10(18): e2207508, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37088792

RESUMO

Absence of any surface arc state has been regarded as the fundamental property of singular Weyl points, because they are circumvented from the Nielsen-Ninomiya no-go theorem. In this work, through systematic investigations on topological properties of isolated Weyl phonons (IWPs) surrounded by closed Weyl nodal walls (WNWs), which are located at the Brillouin zone (BZ) boundaries of bosonic systems, it uncovers that a new kind of phononic surface state, that is, the multi-fold fan-shape surface state named by us, is exhibited to connect the projections of IWP and WNWs. Importantly, the number of fan leaves in this surface state is associated with the Chern number of IWP. Moreover, the topological features of charge-two IWP in K2 Mg2 O3 (SG No. 96) and charge-four IWP in Nb3 Al2 N (SG No. 213) confirm further the above fundamental properties of this kind of surface state. The theoretical work not only provides an effective way to seek for IWPs as well as to determine their Chern number in real materials, but also uncovers a new class of surface states in the topological Weyl complex composed of IWPs and WNWs.


Assuntos
Fônons , Folhas de Planta , Fator de Crescimento Transformador beta
17.
ACS Nano ; 16(8): 12437-12444, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35900014

RESUMO

Two-dimensional (2D) magnets are crucial in the construction of 2D magnetic and spintronic devices. Many devices, including spin valves and multiple tunneling junctions, have been developed by vertically stacking 2D magnets with other functional blocks. However, owing to limited local interactions at the interfaces, the device structures are typically extremely complex. To solve this problem, the nonlocal manipulation of magnetism may be a good solution. In this study, we use the magneto-optical Kerr effect technique to demonstrate the nonlocal manipulation of magnetism in an itinerant 2D ferromagnet, Fe3GeTe2 (FGT), whose magnetism can be manipulated via an antiferromagnet/ferromagnet interface or a current-induced spin-orbital torque placed distant from the local site. It is discovered that the coupling of a small piece of MnPS3 (∼40 µm2) with FGT can significantly enhance the coercive field and emergence of exchange bias in the entire FGT flake (∼2000 µm2). Moreover, FGT flakes with different thicknesses have the same coercive field at low temperatures if they are coupled together. Our study provides an understanding of the basic magnetism of 2D itinerant ferromagnets as well as opportunities for engineering magnetism with an additional degree of freedom.

18.
J Chem Phys ; 134(5): 054903, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21303156

RESUMO

Electronic transport through a quasi-one-dimensional zigzaglike polymer device is theoretically studied by means of the nonequilibrium Green's function approach. In this system, the main zigzag chain consists of carbon atoms and is attached with side radicals at its next-near-neighbor sites. The results show that a zero point of the linear conductance spectrum occurs due to the Fano antiresonance induced by the electron hoppings between the main chain and the side radicals, which leads to the fact that the linear conductance spectrum displays an insulating band around the antiresonant point. The increase in the polymer size makes both edges of the insulating band to become steep rapidly, which makes the insulating band approach to be a well-defined one. The formation of the dimer along the main chain enhances the insulating band width but much suppresses the electronic transport through the device. Moreover, if the many-body effect due to the electron interaction is taken into account, the antiresonance effect and the well-defined insulating band remain. As a result, a well spin-polarized window appears as the spin splitting occurred by applying an external magnetic field. These results strongly propose that there is a new way for the organic polymer to be applied as a spin-filter.

19.
Chemphyschem ; 11(15): 3291-8, 2010 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-20839268

RESUMO

The thermodynamics and transport properties of strong-rail ladder systems are investigated by means of Green's function theory. It is shown that the magnetic behavior clearly manifests a typical antiferromagnetism with gapped or gapless low-lying excitations, which is in agreement with the experimental results. In addition, the temperature-field-induced phase diagram is explored, and we demonstrate a Luttinger liquid behavior in the window h(c) (marking the ending of the M=0 plateau)

20.
Nanoscale ; 12(16): 8942-8948, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32267253

RESUMO

One-dimensional (1D) materials with robust ferromagnetic ground states are difficult to achieve but provide a significant platform for potential spintronic device applications in future. Herein, a new family of 1D transition metal dihalide (TMCl2; where TM = Cu, Co, Cr) nanowires are proposed by using first-principles calculations. Their dynamic stability is ensured by Born-Oppenheimer molecular dynamics simulations. The electronic structures demonstrate that both CoCl2 and CuCl2 nanowires are promising bipolar magnetic semiconductors (BMSs) and can be converted into 1D half-metal materials by a small amount of carrier doping. The CrCl2 nanowire is an antiferromagnetic semiconductor (AFS). The formation of a BMS is attributed to the superexchange coupling between the Co/Cu atoms through the 3p orbitals in the Cl atoms. By using Monte Carlo simulations, we found that the CoCl2 nanowire has a Curie point of 6 K, while the CuCl2 nanowire has a corresponding Curie point of 14 K. Our results allow us to put forward a strategy to realize 1D BMSs and to design low-dimensional AF spintronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA