Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacogenet Genomics ; 34(4): 105-116, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38470454

RESUMO

OBJECTIVES: Genetic variation has been a major contributor to interindividual variability of warfarin dosage requirement. The specific genetic factors contributing to warfarin bleeding complications are largely unknown, particularly in Chinese patients. In this study, 896 Chinese patients were enrolled to explore the effect of CYP2C9 and VKORC1 genetic variations on both the efficacy and safety of warfarin therapy. METHODS AND RESULTS: Univariate analyses unveiled significant associations between two specific single nucleotide polymorphisms rs1057910 in CYP2C9 and rs9923231 in VKORC1 and stable warfarin dosage ( P  < 0.001). Further, employing multivariate logistic regression analysis adjusted for age, sex and height, the investigation revealed that patients harboring at least one variant allele in CYP2C9 exhibited a heightened risk of bleeding events compared to those with the wild-type genotype (odds ratio = 2.16, P  = 0.04). Moreover, a meta-analysis conducted to consolidate findings confirmed the associations of both CYP2C9 (rs1057910) and VKORC1 (rs9923231) with stable warfarin dosage. Notably, CYP2C9 variant genotypes were significantly linked to an increased risk of hemorrhagic complications ( P  < 0.00001), VKORC1 did not demonstrate a similar association. CONCLUSION: The associations found between specific genetic variants and both stable warfarin dosage and bleeding risk might be the potential significance of gene detection in optimizing warfarin therapy for improving patient efficacy and safety.


Assuntos
Anticoagulantes , Povo Asiático , Citocromo P-450 CYP2C9 , Polimorfismo de Nucleotídeo Único , Vitamina K Epóxido Redutases , Varfarina , Humanos , Citocromo P-450 CYP2C9/genética , Vitamina K Epóxido Redutases/genética , Varfarina/efeitos adversos , Varfarina/administração & dosagem , Feminino , Masculino , Pessoa de Meia-Idade , Anticoagulantes/efeitos adversos , Anticoagulantes/administração & dosagem , Idoso , Povo Asiático/genética , Hemorragia/induzido quimicamente , Hemorragia/genética , China , Adulto , Genótipo , Estudos de Associação Genética , População do Leste Asiático
2.
EBioMedicine ; 99: 104940, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38154379

RESUMO

BACKGROUND: Pathogenic variants in the centrosome protein (CEP) family have been implicated in primary microcephaly, Seckel syndrome, and classical ciliopathies. However, most CEP genes remain unlinked to specific Mendelian genetic diseases in humans. We sought to explore the roles of CEP295 in human pathology. METHODS: Whole-exome sequencing was performed to screen for pathogenic variants in patients with severe microcephaly. Patient-derived fibroblasts and CEP295-depleted U2OS and RPE1 cells were used to clarify the underlying pathomechanisms, including centriole/centrosome development, cell cycle and proliferation changes, and ciliogenesis. Complementary experiments using CEP295 mRNA were performed to determine the pathogenicity of the identified missense variant. FINDINGS: Here, we report bi-allelic variants of CEP295 in four children from two unrelated families, characterized by severe primary microcephaly, short stature, developmental delay, intellectual disability, facial deformities, and abnormalities of fingers and toes, suggesting a Seckel-like syndrome. Mechanistically, depletion of CEP295 resulted in a decrease in the numbers of centrioles and centrosomes and triggered p53-dependent G1 cell cycle arrest. Moreover, loss of CEP295 causes extensive primary ciliary defects in both patient-derived fibroblasts and RPE1 cells. The results from complementary experiments revealed that the wild-type CEP295, but not the mutant protein, can correct the developmental defects of the centrosome/centriole and cilia in the patient-derived skin fibroblasts. INTERPRETATION: This study reports CEP295 as a causative gene of the syndromic microcephaly phenotype in humans. Our study also demonstrates that defects in CEP295 result in primary ciliary defects. FUNDING: A full list of funding bodies that contributed to this study can be found under "Acknowledgments."


Assuntos
Deficiência Intelectual , Microcefalia , Criança , Humanos , Ciclo Celular/genética , Centríolos/genética , Centríolos/metabolismo , Deficiência Intelectual/genética , Microcefalia/genética , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA