Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Lipids Health Dis ; 23(1): 201, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937844

RESUMO

BACKGROUND: Nonalcoholic steatohepatitis (NASH) is a prevalent chronic liver condition. However, the potential therapeutic benefits and underlying mechanism of nicotinate-curcumin (NC) in the treatment of NASH remain uncertain. METHODS: A rat model of NASH induced by a high-fat and high-fructose diet was treated with nicotinate-curcumin (NC, 20, 40 mg·kg- 1), curcumin (Cur, 40 mg·kg- 1) and metformin (Met, 50 mg·kg- 1) for a duration of 4 weeks. The interaction between NASH, Cur and Aldo-Keto reductase family 1 member B10 (AKR1B10) was filter and analyzed using network pharmacology. The interaction of Cur, NC and AKR1B10 was analyzed using molecular docking techniques, and the binding energy of Cur and NC with AKR1B10 was compared. HepG2 cells were induced by Ox-LDL (25 µg·ml- 1, 24 h) in high glucose medium. NC (20µM, 40µM), Cur (40µM) Met (150µM) and epalrestat (Epa, 75µM) were administered individually. The activities of ALT, AST, ALP and the levels of LDL, HDL, TG, TC and FFA in serum were quantified using a chemiluminescence assay. Based on the changes in the above indicators, score according to NAS standards. The activities of Acetyl-CoA and Malonyl-CoA were measured using an ELISA assay. And the expression and cellular localization of AKR1B10 and Acetyl-CoA carboxylase (ACCα) in HepG2 cells were detected by Western blotting and immunofluorescence. RESULTS: The results of the animal experiments demonstrated that NASH rat model induced by a high-fat and high-fructose diet exhibited pronounced dysfunction in liver function and lipid metabolism. Additionally, there was a significant increase in serum levels of FFA and TG, as well as elevated expression of AKR1B10 and ACCα, and heightened activity of Acetyl-CoA and Malonyl-CoA in liver tissue. The administration of NC showed to enhance liver function in rats with NASH, leading to reductions in ALT, AST and ALP levels, and decrease in blood lipid and significant inhibition of FFA and TG synthesis in the liver. Network pharmacological analysis identified AKR1B10 and ACCα as potential targets for NASH treatment. Molecular docking studies revealed that both Cur and NC are capable of binding to AKR1B10, with NC exhibiting a stronger binding energy to AKR1B10. Western blot analysis demonstrated an upregulation in the expression of AKR1B10 and ACCα in the liver tissue of NASH rats, accompanied by elevated Acetyl-CoA and Malonyl-CoA activity, and increased levels of FFA and TG. The results of the HepG2 cell experiments induced by Ox-LDL suggest that NC significantly inhibited the expression and co-localization of AKR1B10 and ACCα, while also reduced levels of TC and LDL-C and increased level of HDL-C. These effects are accompanied by a decrease in the activities of ACCα and Malonyl-CoA, and levels of FFA and TG. Furthermore, the impact of NC appears to be more pronounced compared to Cur. CONCLUSION: NC could effectively treat NASH and improve liver function and lipid metabolism disorder. The mechanism of NC is related to the inhibition of AKR1B10/ACCα pathway and FFA/TG synthesis of liver.


Assuntos
Aldo-Ceto Redutases , Curcumina , Hepatopatia Gordurosa não Alcoólica , Triglicerídeos , Curcumina/farmacologia , Curcumina/análogos & derivados , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Humanos , Células Hep G2 , Aldo-Ceto Redutases/metabolismo , Ratos , Masculino , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Acetil-CoA Carboxilase/metabolismo , Aldeído Redutase/metabolismo , Aldeído Redutase/antagonistas & inibidores , Dieta Hiperlipídica/efeitos adversos , Simulação de Acoplamento Molecular , Fígado/efeitos dos fármacos , Fígado/metabolismo , Metformina/farmacologia , Ratos Sprague-Dawley , Modelos Animais de Doenças , Rodanina/análogos & derivados , Tiazolidinas
2.
Molecules ; 29(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257322

RESUMO

Five artemisinin bivalent ligands molecules 4a-4e were designed, synthesized, and confirmed by 1H NMR, 13C NMR, and low-resolution mass spectrometry, and the bioactivities of the target compounds were investigated against four human tumor cell lines in vitro, including BGC-823, HepG-2, MCF-7, and HCT-116. The results showed 4a, 4d, and 4e exhibited significantly tumor cell inhibitory activity compared with the artemisinin and dihydroartemisinin; compound 4e has good biological activity inhibiting BGC-823 with an IC50 value of 8.30 µmol/L. Then, the good correlations with biological results were validated by molecular docking through the established bivalent ligands multi-target model, which showed that 4e could bind well with the antitumor protein MMP-9.


Assuntos
Artemisininas , Humanos , Simulação de Acoplamento Molecular , Artemisininas/farmacologia , Linhagem Celular Tumoral , Ligantes
3.
J Org Chem ; 84(18): 12237-12245, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31480831

RESUMO

A novel one-pot three-component cascade cyclization strategy for the synthesis of 2-amino-5-acylthiazoles using enaminones, cyanamide, and elemental sulfur has been developed. The reported methods have demonstrated good tolerance of various functional groups. Up to 28 2-amino-5-acylthiazole compounds bearing diverse structural differences were successfully synthesized from easily obtained starting materials with moderate to excellent yields. Our method provides an effective way for the access of valuable and potentially bioactive 2-amino-5-acylthiazole derivatives.

4.
Int J Nanomedicine ; 19: 6231-6252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915916

RESUMO

Extracellular vesicles (EVs) are microparticles released from cells in both physiological and pathological conditions and could be used to monitor the progression of various pathological states, including neoplastic diseases. In various EVs, tumor-derived extracellular vesicles (TEVs) are secreted by different tumor cells and are abundant in many molecular components, such as proteins, nucleic acids, lipids, and carbohydrates. TEVs play a crucial role in forming and advancing various cancer processes. Therefore, TEVs are regarded as promising biomarkers for the early detection of cancer in liquid biopsy. However, the currently developed TEV detection methods still face several key scientific problems that need to be solved, such as low sensitivity, poor specificity, and poor accuracy. To overcome these limitations, DNA walkers have emerged as one of the most popular nanodevices that exhibit better signal amplification capability and enable highly sensitive and specific detection of the analytes. Due to their unique properties of high directionality, flexibility, and efficiency, DNA walkers hold great potential for detecting TEVs. This paper provides an introduction to EVs and DNA walker, additionally, it summarizes recent advances in DNA walker-based detection of TEVs (2018-2024). The review highlights the close relationship between TEVs and DNA walkers, aims to offer valuable insights into TEV detection and to inspire the development of reliable, efficient, simple, and innovative methods for detecting TEVs based on DNA walker in the future.


Assuntos
DNA , Vesículas Extracelulares , Neoplasias , Humanos , Vesículas Extracelulares/química , Neoplasias/metabolismo , DNA/química , Biomarcadores Tumorais , Biópsia Líquida/métodos , Detecção Precoce de Câncer/métodos
5.
Front Pharmacol ; 13: 960140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304153

RESUMO

In recent years, small intestine as a key target in the treatment of Inflammatory bowel disease caused by NSAIDs has become a hot topic. Sanguinarine (SA) is one of the main alkaloids in the Macleaya cordata extracts with strong pharmacological activity of anti-tumor, anti-inflammation and anti-oxidant. SA is reported to inhibit acetic acid-induced colitis, but it is unknown whether SA can relieve NSAIDs-induced small intestinal inflammation. Herein, we report that SA effectively reversed the inflammatory lesions induced by indomethacin (Indo) in rat small intestine and IEC-6 cells in culture. Our results showed that SA significantly relieved the symptoms and reversed the inflammatory lesions of Indo as shown in alleviation of inflammation and improvement of colon macroscopic damage index (CMDI) and tissue damage index (TDI) scores. SA decreased the levels of TNF-α, IL-6, IL-1ß, MDA and LDH in small intestinal tissues and IEC-6 cells, but increased SOD activity and ZO-1 expression. Mechanistically, SA dose-dependently promoted the expression of Nrf2 and HO-1 by decreasing Keap-1 level, but inhibited p65 phosphorylation and nuclear translocation in Indo-treated rat small intestine and IEC-6 cells. Furthermore, in SA treated cells, the colocalization between p-p65 and CBP in the nucleus was decreased, while the colocalization between Nrf2 and CBP was increased, leading to the movement of gene expression in the nucleus to the direction of anti-inflammation and anti-oxidation. Nrf2 silencing blocked the effects of SA. Together our results suggest that SA can significantly prevent intestinal inflammatory lesions induced by Indo in rats and IEC-6 cells through regulation of the Nrf2 pathway and NF-κBp65 pathway.

6.
Bioorg Med Chem ; 18(22): 8035-43, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20934346

RESUMO

Four series of dihydropyrazolo[3,4-b]pyridines and benzo[4,5]imidazo[1,2-a]pyrimidines were designed and synthesized as dual KSP and Aurora-A kinase inhibitors for anti-cancer agents by introducing some fragments of Aurora-A kinase inhibitors into our KSP inhibitor CPUYL064. A total of 19 target compounds were evaluated by two related enzyme inhibition assays and a cytotoxicity assay in vitro. The results showed that some target compounds could inhibit both enzymes, and several of them showed significant inhibition activity against HCT116 cell line. Despite showing moderate KSP and Aurora-A kinase inhibition, the lead compounds 6a and 6e displayed significant cytotoxic activity in the micromolar range, especially against the HCT116 cell line and HepG2 cell line. The results may be useful for developing a new class of inhibitors having a dual function, KSP inhibition and Aurora-A kinase inhibition, for the treatment of cancer.


Assuntos
Antineoplásicos/síntese química , Benzimidazóis/química , Cinesinas/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Piridinas/química , Pirimidinas/química , Antineoplásicos/química , Antineoplásicos/toxicidade , Aurora Quinases , Benzimidazóis/síntese química , Benzimidazóis/farmacologia , Sítios de Ligação , Domínio Catalítico , Linhagem Celular Tumoral , Simulação por Computador , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Cinesinas/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/toxicidade , Proteínas Serina-Treonina Quinases/metabolismo , Pirazóis/síntese química , Pirazóis/química , Pirazóis/toxicidade , Piridinas/síntese química , Piridinas/farmacologia , Piridinas/toxicidade , Pirimidinas/síntese química , Pirimidinas/toxicidade , Relação Estrutura-Atividade
7.
Eur J Med Chem ; 136: 195-211, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28494256

RESUMO

The dominant paradigm in drug discovery is to design ligands with maximum selectivity to act on individual drug targets. With the target-based approach, many new chemical entities have been discovered, developed, and further approved as drugs. However, there are a large number of complex diseases such as cancer that cannot be effectively treated or cured only with one medicine to modulate the biological function of a single target. As simultaneous intervention of two (or multiple) cancer progression relevant targets has shown improved therapeutic efficacy, the innovation of multi-targeted drugs has become a promising and prevailing research topic and numerous multi-targeted anticancer agents are currently at various developmental stages. However, most multi-pharmacophore scaffolds are usually discovered by serendipity or screening, while rational design by combining existing pharmacophore scaffolds remains an enormous challenge. In this review, four types of multi-pharmacophore modes are discussed, and the examples from literature will be used to introduce attractive lead compounds with the capability of simultaneously interfering with different enzyme or signaling pathway of cancer progression, which will reveal the trends and insights to help the design of the next generation multi-targeted anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Descoberta de Drogas , Fosfotransferases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Fosfotransferases/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA