Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Microbiol ; : 1-16, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346140

RESUMO

Cancer immunotherapies have been widely hailed as a breakthrough for cancer treatment in the last decade, epitomized by the unprecedented results observed with checkpoint blockade. Even so, only a minority of patients currently achieve durable remissions. In general, responsive patients appear to have either a high number of tumor neoantigens, a preexisting immune cell infiltrate in the tumor microenvironment, or an 'immune-active' transcriptional profile, determined in part by the presence of a type I interferon gene signature. These observations suggest that the therapeutic efficacy of immunotherapy can be enhanced through strategies that release tumor neoantigens and/or produce a pro-inflammatory tumor microenvironment. In principle, exogenous tumor-targeting bacteria offer a unique solution for improving responsiveness to immunotherapy. This review discusses how tumor-selective bacterial infection can modulate the immunological microenvironment of the tumor and the potential for combination with cancer immunotherapy strategies to further increase therapeutic efficacy. In addition, we provide a perspective on the clinical translation of replicating bacterial therapies, with a focus on the challenges that must be resolved to ensure a successful outcome.

2.
FASEB J ; 37(4): e22892, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36951647

RESUMO

Epidermal nerve fiber regeneration and sensory function are severely impaired in skin wounds of diabetic patients. To date, however, research on post-traumatic nerve regeneration and sensory reconstruction remains scarce, and effective clinical therapeutics are lacking. In the current study, localized treatment with RL-QN15, considered as a drug candidate for intervention in skin wounds in our previous research, accelerated the healing of full-thickness dorsal skin wounds in diabetic mice and footpad skin wounds in diabetic rats. Interestingly, nerve density and axonal plasticity in the skin wounds of diabetic rats and mice, as well as plantar sensitivity in diabetic rats, were markedly enhanced by RL-QN15 treatment. Furthermore, RL-QN15 promoted the proliferation, migration, and axonal length of neuron-like PC12 cells, which was likely associated with activation of the phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt) signaling pathway. The therapeutic effects of RL-QN15 were partially reduced by blocking the PI3K/Akt signaling pathway with the inhibitor LY294002. Thus, RL-QN15 showed positive therapeutic effects on the distribution of epidermal nerve fibers and stimulated the recovery of sensory function after cutaneous injury. This study lays a solid foundation for the development of RL-QN15 peptide-based therapeutics against diabetic skin wounds.


Assuntos
Diabetes Mellitus Experimental , Proteínas Proto-Oncogênicas c-akt , Ratos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases , Pele , Fibras Nervosas/metabolismo , Sensação , Peptídeos/farmacologia , Regeneração Nervosa/fisiologia
3.
Cell Mol Biol Lett ; 29(1): 24, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317065

RESUMO

BACKGROUND: Chronic nonhealing wounds remain a considerable challenge in clinical treatment due to excessive inflammation and impeded reepithelialization and angiogenesis. Therefore, the discovery of novel prohealing agents for chronic skin wounds are urgent and important. Amphibian-derived prohealing peptides, especially immunomodulatory peptides, provide a promising strategy for the treatment of chronic skin trauma. However, the mechanism of immunomodulatory peptides accelerating the skin wound healing remains poorly understood. METHODS: The prohealing ability of peptide Andersonin-W1 (AW1) was assessed by cell scratch, cell proliferation, transwell, and tube formation. Next, full-thickness, deep second-degree burns and diabetic full-thickness skin wounds in mice were performed to detect the therapeutic effects of AW1. Moreover, the tissue regeneration and expression of inflammatory cytokines were evaluated by hematoxylin and eosin (H&E), enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry staining. Molecular docking, colocalization, and western blotting were used to explore the mechanism of AW1 in promoting wound healing. RESULTS: We provide solid evidence to display excellent prohealing effects of AW1, identified as a short antimicrobial peptide in our previous report. At relative low concentration of nM, AW1 promoted the proliferation, migration, and scratch repair of keratinocyte, macrophage proliferation, and tube formation of HUVEC. AW1 also facilitated reepithelialization, granulation regeneration, and angiogenesis, thus significantly boosting the healing of full-thickness, deep second-degree burns and diabetic skin wounds in mice. Mechanistically, in macrophages, AW1 directly bound to Toll-like receptor 4 (TLR4) in the extracellular region and regulated the downstream nuclear factor-κB (NF-κB) signaling pathway to facilitate the inflammatory factor secretion and suppress excessive inflammation induced by lipopolysaccharide (LPS). Moreover, AW1 regulated macrophage polarization to promote the transition from the inflammatory to the proliferative phase and then facilitated reepithelialization, granulation regeneration, and angiogenesis, thus exhibiting excellent therapeutic effects on diabetic skin wounds. CONCLUSIONS: AW1 modulates inflammation and the wound healing process by the TLR4/NF-κB molecular axis, thus facilitating reepithelialization, granulation regeneration, and angiogenesis. These findings not only provided a promising multifunctional prohealing drug candidate for chronic nonhealing skin wounds but also highlighted the unique roles of "small" peptides in the elucidation of "big" human disease mechanisms.


Assuntos
Queimaduras , Diabetes Mellitus , Animais , Humanos , Camundongos , Queimaduras/tratamento farmacológico , Queimaduras/metabolismo , Diabetes Mellitus/metabolismo , Inflamação/metabolismo , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peptídeos/química , Pele/metabolismo , Receptor 4 Toll-Like/metabolismo
4.
Neuromodulation ; 27(2): 273-283, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36801128

RESUMO

OBJECTIVE: Functional dyspepsia (FD), which has a complicated pathophysiologic process, is a common functional gastrointestinal disease. Gastric hypersensitivity is the key pathophysiological factor in patients with FD with chronic visceral pain. Auricular vagal nerve stimulation (AVNS) has the therapeutic effect of reducing gastric hypersensitivity by regulating the activity of the vagus nerve. However, the potential molecular mechanism is still unclear. Therefore, we investigated the effects of AVNS on the brain-gut axis through the central nerve growth factor (NGF)/ tropomyosin receptor kinase A (TrkA)/phospholipase C-gamma (PLC-γ) signaling pathway in FD model rats with gastric hypersensitivity. MATERIALS AND METHODS: We established the FD model rats with gastric hypersensitivity by means of colon administration of trinitrobenzenesulfonic acid on ten-day-old rat pups, whereas the control rats were given normal saline. AVNS, sham AVNS, K252a (an inhibitor of TrkA, intraperitoneally), and K252a + AVNS were performed on eight-week-old model rats for five consecutive days. The therapeutic effect of AVNS on gastric hypersensitivity was determined by the measurement of abdominal withdrawal reflex response to gastric distention. NGF in gastric fundus and NGF, TrkA, PLC-γ, and transient receptor potential vanilloid 1 (TRPV1) in the nucleus tractus solitaries (NTS) were detected separately by polymerase chain reaction, Western blot, and immunofluorescence tests. RESULTS: It was found that a high level of NGF in gastric fundus and an upregulation of the NGF/TrkA/PLC-γ signaling pathway in NTS were manifested in model rats. Meanwhile, both AVNS treatment and the administration of K252a not only decreased NGF messenger ribonucleic acid (mRNA) and protein expressions in gastric fundus but also reduced the mRNA expressions of NGF, TrkA, PLC-γ, and TRPV1 and inhibited the protein levels and hyperactive phosphorylation of TrkA/PLC-γ in NTS. In addition, the expressions of NGF and TrkA proteins in NTS were decreased significantly after the immunofluorescence assay. The K252a + AVNS treatment exerted a more sensitive effect on regulating the molecular expressions of the signal pathway than did the K252a treatment. CONCLUSION: AVNS can regulate the brain-gut axis effectively through the central NGF/TrkA/PLC-γ signaling pathway in the NTS, which suggests a potential molecular mechanism of AVNS in ameliorating visceral hypersensitivity in FD model rats.


Assuntos
Dispepsia , Estimulação do Nervo Vago , Animais , Ratos , Dispepsia/terapia , Fator de Crescimento Neural/metabolismo , Fosfolipase C gama/metabolismo , Receptor trkA/genética , Receptor trkA/metabolismo , RNA Mensageiro , Transdução de Sinais , Tropomiosina/metabolismo
5.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791522

RESUMO

The role of lncRNA and circRNA in wheat grain development is still unclear. The objectives of this study were to characterize the lncRNA and circRNA in the wheat grain development and to construct the interaction network among lncRNA, circRNA, and their target miRNA to propose a lncRNA-circRNA-miRNA module related to wheat grain development. Full transcriptome sequencing on two wheat varieties (Annong 0942 and Anke 2005) with significant differences in 1000-grain weight at 10 d (days after pollination), 20 d, and 30 d of grain development were conducted. We detected 650, 736, and 609 differentially expressed lncRNA genes, and 769, 1054, and 1062 differentially expressed circRNA genes in the grains of 10 days, 20 days and 30 days after pollination between Annong 0942 and Anke 2005, respectively. An analysis of the lncRNA-miRNA and circRNA-miRNA targeting networks reveals that circRNAs exhibit a more complex and extensive interaction network in the development of cereal grains and the formation of grain shape. Central to these interactions are tae-miR1177, tae-miR1128, and tae-miR1130b-3p. In contrast, lncRNA genes only form a singular network centered around tae-miR1133 and tae-miR5175-5p when comparing between varieties. Further analysis is conducted on the underlying genes of all target miRNAs, we identified TaNF-YB1 targeted by tae-miR1122a and TaTGW-7B targeted by miR1130a as two pivotal regulatory genes in the development of wheat grains. The quantitative real-time PCR (qRT-PCR) and dual-luciferase reporter assays confirmed the target regulatory relationships between miR1130a-TaTGW-7B and miR1122a-TaNF-YB1. We propose a network of circRNA and miRNA-mediated gene regulation in the development of wheat grains.


Assuntos
Grão Comestível , Regulação da Expressão Gênica de Plantas , MicroRNAs , RNA Circular , RNA Longo não Codificante , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , RNA Longo não Codificante/genética , RNA Circular/genética , RNA Circular/metabolismo , MicroRNAs/genética , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Redes Reguladoras de Genes , RNA de Plantas/genética , Perfilação da Expressão Gênica
6.
J Biol Chem ; 298(10): 102429, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36037970

RESUMO

Stroke can lead to severe nerve injury and debilitation, resulting in considerable social and economic burdens. Due to the high complexity of post-injury repair mechanisms, drugs approved for use in stroke are extremely scarce, and thus, the discovery of new antistroke drugs and targets is critical. Tryptophan hydroxylase 1 (TPH1) is involved in a variety of mental and neurobehavioral processes, but its effects on stroke have not yet been reported. Here, we used primary astrocyte culture, quantitative real-time PCR, double immunofluorescence assay, lentiviral infection, cell viability analysis, Western blotting, and other biochemical experiments to explore the protective mechanism of peptide OM-LV20, which previously exhibited neuroprotective effects in rats after ischemic stroke via a mechanism that may involve TPH1. First, we showed that TPH1 was expressed in rat astrocytes. Next, we determined that OM-LV20 impacted expression changes of TPH1 in CTX-TNA2 cells and exhibited a protective effect on the decrease in cell viability and catalase (CAT) levels induced by hydrogen peroxide. Importantly, we also found that TPH1 expression induced by OM-LV20 may be related to the level of change in the pituitary adenylate cyclase-activating peptide type 1 receptor (PAC1R) and to the JNK signaling pathways, thereby exerting a protective effect on astrocytes against oxidative stress. The protective effects of OM-LV20 likely occur via the 'PAC1R/JNK/TPH1' axis, thus highlighting TPH1 as a novel antistroke drug target.


Assuntos
Astrócitos , MAP Quinase Quinase 4 , Estresse Oxidativo , Peptídeos , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Acidente Vascular Cerebral , Triptofano Hidroxilase , Animais , Ratos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peptídeos/farmacologia , Acidente Vascular Cerebral/prevenção & controle , Triptofano Hidroxilase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , MAP Quinase Quinase 4/metabolismo
7.
Biochem Biophys Res Commun ; 689: 149222, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37979330

RESUMO

Hyperuricemia is a clinical disease characterized by a continuous increase in uric acid (UA) due to purine metabolism disorder. As current drug treatments are limited, it is imperative to explore new drugs that offer better safety and efficacy. In this study, Nephila clavata toxin gland homogenates were isolated and purified by exclusion chromatography and high-performance liquid chromatography, resulting in the identification and isolation of a short peptide (NCTX15) with the sequence 'QSGHTFK'. Analysis showed that NCTX15 exhibited no cytotoxicity in mouse macrophages or toxic and hemolytic activity in mice. Notably, NCTX15 inhibited UA production by down-regulating urate transporter 1 and glucose transporter 9 and up-regulating organic anion transporter 1, thus promoting UA excretion. In addition, NCTX15 alleviated the inflammatory response and renal injury by inhibiting the expression of inflammatory factors interleukin-6, interleukin-1ß, tumor necrosis factor alpha, NLR family, pyrin domain-containing 3, and pyroptosis-related factor gasdermin D. These results indicate that NCTX15 displayed urate-lowering, anti-inflammatory, and analgesic effects. As the first urate-reducing short peptide isolated from a spider toxin gland homogenate, NCTX15 exhibits considerable potential as a novel drug molecule for anti-gout and hyperuricemia treatment.


Assuntos
Gota , Hiperuricemia , Camundongos , Animais , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Ácido Úrico/metabolismo , Gota/metabolismo , Rim/metabolismo , Interleucina-6/metabolismo , Xantina Oxidase/metabolismo
8.
J Neuroinflammation ; 20(1): 53, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36855153

RESUMO

BACKGROUND: Despite considerable efforts, ischemic stroke (IS) remains a challenging clinical problem. Therefore, the discovery of effective therapeutic and targeted drugs based on the underlying molecular mechanism is crucial for effective IS treatment. METHODS: A cDNA-encoding peptide was cloned from RNA extracted from Rana limnocharis skin, and the mature amino acid sequence was predicted and synthesized. Hemolysis and acute toxicity of the peptide were tested. Furthermore, its neuroprotective properties were evaluated using a middle cerebral artery occlusion/reperfusion (MCAO/R) model in rats and an oxygen-glucose deprivation/reperfusion (OGD/R) model in neuron-like PC12 cells. The underlying molecular mechanisms were explored using microRNA (miRNA) sequencing, quantitative real-time polymerase chain reaction, dual-luciferase reporter gene assay, and western blotting. RESULTS: A new peptide (NP1) with an amino acid sequence of 'FLPAAICLVIKTC' was identified. NP1 showed no obvious toxicities in vivo and in vitro and was able to cross the blood-brain barrier. Intraperitoneal administration of NP1 (10 nmol/kg) effectively reduced the volume of cerebral infarction and relieved neurological dysfunction in MCAO/R model rats. Moreover, NP1 significantly alleviated the decrease in viability and increase in apoptosis of neuron-like PC12 cells induced by OGD/R. NP1 effectively suppressed inflammation by reducing interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) levels in vitro and in vivo. Furthermore, NP1 up-regulated the expression of miR-6328, which, in turn, down-regulated kappa B kinase ß (IKKß). IKKß reduced the phosphorylation of nuclear factor-kappa B p65 (NF-κB p65) and inhibitor of NF-κB (I-κB), thereby inhibiting activation of the NF-κB pathway. CONCLUSIONS: The newly discovered non-toxic peptide NP1 ('FLPAAICLVIKTC') exerted neuroprotective effects on cerebral ischemia-reperfusion injury by reducing inflammation via the miR-6328/IKKß/NF-κB axis. Our findings not only provide an exogenous peptide drug candidate and endogenous small nucleic acid drug candidate but also a new drug target for the treatment of IS. This study highlights the importance of peptides in the development of new drugs, elucidation of pathological mechanisms, and discovery of new drug targets.


Assuntos
MicroRNAs , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Animais , Ratos , NF-kappa B , Quinase I-kappa B , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Proteínas Serina-Treonina Quinases , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico
9.
Amino Acids ; 55(11): 1687-1699, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37794194

RESUMO

Excessive melanogenesis leads to hyperpigmentation, which is one of the common skin conditions in humans. Existing whitening cosmetics cannot meet market needs due to their inherent limitations. Thus, the development of novel skin-whitening agents continues to be a challenge. The peptide OA-VI12 from the skin of amphibians at high altitude has attracted attention due to its remarkable anti light damage activity. However, whether OA-VI12 has the skin-whitening effect of inhibiting melanogenesis is still. Mouse melanoma cells (B16) were used to study the effect of OA-VI12 on cell viability and melanin content. The pigmentation model of C57B/6 mouse ear skin was induced by UVB and treated with OA-VI12. Melanin staining was used to observe the degree of pigmentation. MicroRNA sequencing, quantitative real-time PCR (qRT-PCR), immunofluorescence analysis and Western blot were used to detect the change of factor expression. Double luciferase gene report experiment was used to prove the regulatory relationship between miRNA and target genes. OA-VI12 has no effect on the viability of B16 cells in the concentration range of 1-100 µM and significantly inhibits the melanin content of B16 cells. Topical application of OA-VI12, which exerted transdermal potency, prevented UVB-induced pigmentation of ear skin. MicroRNA sequencing and double luciferase reporter analysis results showed that miR-122-5p, which directly regulated microphthalmia-associated transcription factor (Mitf), had significantly different expression before and after treatment with OA-VI12. Mitf is a simple helix loop and leucine zipper transcription factor that regulates tyrosinase (Tyr) expression by binding to the M-box promoter element of Tyr. qRT-PCR, immunofluorescence analysis and Western blot showed that OA-VI12 up-regulated the expression of miR-122-5p and inhibited the expression of Mitf and Tyr. The effects of OA-VI12 on melanogenesis inhibition in vitro and in vivo may involve the miR-122-5p/Mitf/tyr axis. OA-VI12 represents the first report on a natural amphibian-derived peptide with skin-whitening capacity and the first report of miR-122-5p as a target for regulating melanogenesis, thereby demonstrating its potential as a novel skin-whitening agent and highlighting amphibian-derived peptides as an underdeveloped resource.


Assuntos
Melaninas , MicroRNAs , Humanos , Animais , Camundongos , Melaninas/metabolismo , Monofenol Mono-Oxigenase/genética , Melanócitos/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Fator de Transcrição Associado à Microftalmia/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Luciferases/metabolismo , Peptídeos/farmacologia , Linhagem Celular Tumoral
10.
Mol Breed ; 43(4): 24, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37313522

RESUMO

Amylose content (AC) is one of the physicochemical indexes of rice quality, which is largely determined by the Waxy (Wx) gene. Fragrance in rice is favored because it adds good flavor and a faint scent. Loss of function of the BADH2 (FGR) gene promotes the biosynthesis of 2-acetyl-1-pyrroline (2AP), which is the main compound responsible for aroma in rice. Here, we used a CRISPR/Cas9 system to simultaneously knock out Wx and FGR genes in 1892S and M858, which are the parents of an indica two-line hybrid rice, Huiliangyou 858 (HLY858). Four T-DNA-free homozygous mutants (1892Swxfgr-1, 1892Swxfgr-2, M858wxfgr-1, and M858wxfgr-2) were obtained. The 1892Swxfgr and M858wxfgr were crossed to generate double mutant hybrid lines HLY858wxfgr-1 and HLY858wxfgr-2. Size-exclusion chromatography (SEC) data indicated that true AC of the wx mutant starches ranged from 0.22 to 1.63%, much lower than those of the wild types (12.93 to 13.76%). However, the gelatinization temperature (GT) of the wx mutants in backgrounds of 1892S, M858, and HLY858 were still high, and showed no significant differences with the wild type controls. The aroma compounds 2AP content in grains of HLY858wxfgr-1 and HLY858wxfgr-2 were 153.0 µg/kg and 151.0 µg/kg, respectively. In contrast, 2AP was not detected in grains of HLY858. There were no significant differences in major agronomic traits between the mutants and HLY858. This study provides guidelines for cultivation of ideal glutinous and aromatic hybrid rice by gene editing.

11.
Cell Mol Biol Lett ; 28(1): 61, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37501100

RESUMO

BACKGROUND: Amphibian derived pro-healing peptides as molecular probes might provide a promising strategy for development of drug candidates and elucidation of cellular and molecular mechanisms of skin wound healing. A novel skin amphibian peptide, OA-RD17, was tested for modulation of cellular and molecular mechanisms associated with skin wound healing. METHODS: Cell scratch, cell proliferation, trans-well, and colony formation assays were used to explore the pro-healing ability of peptide OA-RD17 and microRNA-632 (miR-632). Then, the therapeutic effects of OA-RD17 and miR-632 were assessed in mice, diabetic patient ex vivo skin wounds and SD rats. Moreover, hematoxylin and eosin (H&E), enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, and immunofluorescence staining were performed to detect skin wound tissue regeneration, inflammatory factors expression, and macrophage polarization. Finally, RNA sequencing, molecular docking, co-localization, dual luciferase reporter, real-time quantitative reverse transcription PCR (RT-qPCR), and Western blotting were used to explore the mechanism of OA-RD17 and miR-632 on facilitating skin wound healing. RESULTS: The non-toxic peptide (OA-RD17) promoted macrophage proliferation and migration by activating MAPK and suppressed inflammation by inhibiting NF-κB. In keratinocytes, OA-RD17 inhibited excessive inflammation, and activated MAPK via the Toll-like receptor 4 (TLR4) to promote proliferation and migration, as well as up-regulate the expression of miR-632, which targeted GSK3ß to activate Wnt/ß-catenin to boost proliferation and migration in a positive feedback manner. Notably, OA-RD17 promoted transition from the inflammatory to proliferative stage, accelerated epidermal and granulation regeneration, and exhibited therapeutic effects on mouse and diabetic patient ex vivo skin wounds. MiR-632 activated Wnt/ß-catenin to promote full-thickness skin wound healing in rats. CONCLUSIONS: OA-RD17 exhibited promising therapeutic effects on mice (full-thickness, deep second-degree burns), and ex vivo skin wounds in diabetic patients by regulating macrophages proliferation, migration, and polarization (MAPK, NF-κB), and keratinocytes proliferation and migration (TLR4/MAPK/miR-632/Wnt/ß-catenin molecular axis). Moreover, miR-632 also activated Wnt/ß-catenin to promote full-thickness skin wound healing in rats. Notably, our results indicate that OA-RD17 and miR-632 are promising pro-healing drug candidates.


Assuntos
MicroRNAs , beta Catenina , Camundongos , Ratos , Animais , beta Catenina/metabolismo , Receptor 4 Toll-Like , NF-kappa B/metabolismo , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Cicatrização , Peptídeos/farmacologia , MicroRNAs/genética , Inflamação , Proliferação de Células/genética
12.
Environ Toxicol ; 38(12): 2826-2835, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37565786

RESUMO

BACKGROUND: Active peptides play a vital role in the development of new drugs and the identification and discovery of drug targets. As the first reported native peptide homodimer with pro-regenerative potency, OA-GP11d could potentially be used as a novel molecular probe to help elucidate the molecular mechanism of skin wound repair and provide new drug targets. METHODS: Bioinformatics analysis and luciferase assay were adopted to determine microRNAs (miRNAs) and its target. The prohealing potency of the miRNA was determined by MTS and a Transwell experiment against mouse macrophages. Enzyme-linked immunosorbent assay, realtime polymerase chain reaction, and western blotting were performed to explore the molecular mechanisms. RESULTS: In this study, OA-GP11d was shown to induce Mus musculus microRNA-186-5p (mmu-miR-186-5p) down-regulation. Results showed that miR-186-5p had a negative effect on macrophage migration and proliferation as well as a targeted and negative effect on TGF-ß type II receptor (TGFßR2) expression and an inhibitory effect on activation of the downstream SMAD family member 2 (Smad2) and protein-p38 kinase signaling pathways. Importantly, delivery of a miR-186-5p mimic delayed skin wound healing in mice. CONCLUSION: miR-186-5p regulated macrophage migration and proliferation to delay wound healing through the TGFßR2/Smad2/p38 molecular axes, thus providing a promising new pro-repair drug target.


Assuntos
MicroRNAs , Animais , Camundongos , Proliferação de Células , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação para Baixo , Movimento Celular/genética , Cicatrização
13.
J Neuroinflammation ; 19(1): 284, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36457055

RESUMO

BACKGROUND: Due to the complexity of the mechanisms involved in epileptogenesis, the available antiseizure drugs (ASDs) do not meet clinical needs; hence, both the discovery of new ASDs and the elucidation of novel molecular mechanisms are very important. METHODS: BALB/c mice were utilized to establish an epilepsy model induced by pentylenetetrazol (PTZ) administration. The peptide HsTx2 was administered for treatment. Primary astrocyte culture, immunofluorescence staining, RNA sequencing, identification and quantification of mouse circRNAs, cell transfection, bioinformatics and luciferase reporter analyses, enzyme-linked immunosorbent assay, RNA extraction and reverse transcription-quantitative PCR, Western blot and cell viability assays were used to explore the potential mechanism of HsTx2 via the circ_0001293/miR-8114/TGF-ß2 axis. RESULTS: The scorpion venom peptide HsTx2 showed an anti-epilepsy effect, reduced the inflammatory response, and improved the circular RNA circ_0001293 expression decrease caused by PTZ in the mouse brain. Mechanistically, in astrocytes, circ_0001293 acted as a sponge of endogenous microRNA-8114 (miR-8114), which targets transforming growth factor-beta 2 (TGF-ß2). The knockdown of circ_0001293, overexpression of miR-8114, and downregulation of TGF-ß2 all reversed the anti-inflammatory effects and the influence of HsTx2 on the MAPK and NF-κB signaling pathways in astrocytes. Moreover, both circ_0001293 knockdown and miR-8114 overexpression reversed the beneficial effects of HsTx2 on inflammation, epilepsy progression, and the MAPK and NF-κB signaling pathways in vivo. CONCLUSIONS: HsTx2 suppressed PTZ-induced epilepsy by ameliorating inflammation in astrocytes via the circ_0001293/miR-8114/TGF-ß2 axis. Our results emphasized that the use of exogenous peptide molecular probes as a novel type of ASD, as well as to explore the novel endogenous noncoding RNA-mediated mechanisms of epilepsy, might be a promising research area.


Assuntos
MicroRNAs , RNA Circular , Venenos de Escorpião , Fator de Crescimento Transformador beta2 , Animais , Camundongos , Inflamação , Camundongos Endogâmicos BALB C , MicroRNAs/genética , NF-kappa B , Pentilenotetrazol/toxicidade , Convulsões/induzido quimicamente , Fator de Crescimento Transformador beta2/genética , RNA Circular/genética
14.
Biochem Biophys Res Commun ; 537: 36-42, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33383562

RESUMO

Ischemia/reperfusion (I/R) is a common injury leading to ischemic stroke. At present, I/R treatment remains limited, highlighting the urgent need for the discovery and development of new protective drugs for brain injury. Here, we investigated the neuroprotective effects of short peptide OM-LV20 previously identified from amphibian against I/R rats. Results showed that intraperitoneal administration of OM-LV20 (20 ng/kg) significantly reduced infarct area formation, improved behavioral abnormalities, and protected cortical and hippocampal neurons against death caused by I/R. Moreover, the underlying molecular mechanism was involved with the regulation of the MAPK and BDNF/AKT signaling pathways, as well as the levels of cyclic adenosine monophosphate, pituitary adenylate cyclase-activating polypeptide receptor, and tryptophan hydroxylase 1. To the best of our knowledge, this research was the first report to describe the neuroprotective effects of an amphibian skin secretion-derived peptide in I/R rats and highlighted OM-LV20 as a promising drug candidate for the development of novel anti-stroke therapies.


Assuntos
Fármacos Neuroprotetores/uso terapêutico , Peptídeos/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Peptídeos/administração & dosagem , Peptídeos/química , Peptídeos/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais/efeitos dos fármacos , Triptofano Hidroxilase/metabolismo
15.
Biochem Biophys Res Commun ; 534: 442-449, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33248693

RESUMO

Ischemic stroke is a severe threat to human health due to its high recurrence, mortality, and disability rates. As such, how to prevent and treat ischemic stroke effectively has become a research hotspot in recent years. Here, we identified a novel peptide, named HsTx2 (AGKKERAGSRRTKIVMLKCIREHGH, 2 861.855 Da), derived from the scorpion Heterometrus spinifer, which showed obvious anti-apoplectic effects in rats with ischemic stroke. Results further demonstrated that HsTx2 significantly reduced formation of infarct area and improved behavioral abnormalities in ischemic stroke rats. These protective effects were likely exerted via activation of the mitogen-activated protein kinase (MAPK) signaling pathway, i.e., up-regulation of phosphorylated ERK1/2 in both rat cerebral cortex and activated microglia (AM); up-regulation of phosphorylated p38 (p-p38) in the cerebral cortex; and inhibition of phosphorylated JNK and p-p38 levels in the AM. In conclusion, this study highlights HsTx2 as a potential neuroprotective agent for stroke.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Venenos de Escorpião/uso terapêutico , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Masculino , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Ratos , Ratos Sprague-Dawley , Venenos de Escorpião/química , Venenos de Escorpião/isolamento & purificação , Escorpiões/química
16.
Opt Lett ; 46(12): 2856-2859, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34129558

RESUMO

In this Letter, we propose a simple and high-precision differential modal group delay (DMGD) characterization method for few-mode fibers (FMF) by using the frequency-modulated continuous wave. Since the detected signals are located at the low-frequency range, our DMGD characterization method waives the use of expensive equipment, such as vector network or optical spectrum analyzers. Due to the high linearity of the used Mach-Zehnder modulator, our DMGD measurement is free from the complex auxiliary interferometer, leading to an improvement of characterization precision. Meanwhile, we propose a novel spectrum recovery algorithm to overcome the shortcoming that the traditional fast Fourier transform (FFT) method is incapable to deal with spectrum features arising in a periodic signal. Therefore, the characterization precision is no longer limited by the FFT length. When a commercial 23299.8 m two-mode fiber is used in the experiment, the DMGD measurement of LP11 mode relative to LP01 mode has a high precision of ±0.007ps/m over the C-band. Our proposed method shows the potential for characterizing the wavelength-dependent DMGD of FMF with more than two LP modes.

17.
Pharmacol Res ; 163: 105296, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33220421

RESUMO

Despite extensive efforts to develop efficacious therapeutic approaches, the treatment of skin wounds remains a considerable clinical challenge. Existing remedies cannot sufficiently meet current needs, so the discovery of novel pro-healing agents is of growing importance. In the current research, we identified a novel short peptide (named RL-QN15, primary sequence 'QNSYADLWCQFHYMC') from Rana limnocharis skin secretions, which accelerated wound healing in mice. Exploration of the underlying mechanisms showed that RL-QN15 activated the MAPK and Smad signaling pathways, and selectively modulated the secretion of cytokines from macrophages. This resulted in the proliferation and migration of skin cells and dynamic regulation of TGF-ß1 and TGF-ß3 in wounds, which accelerated re-epithelialization and granulation tissue formation and thus skin regeneration. Moreover, RL-QN15 showed significant therapeutic potency against chronic wounds, skin fibrosis, and oral ulcers. Our results highlight frog skin secretions as a potential treasure trove of bioactive peptides with healing activity. The novel peptide (RL-QN15) identified in this research shows considerable capacity as a candidate for the development of novel pro-healing agents.


Assuntos
Úlceras Orais/tratamento farmacológico , Peptídeos/uso terapêutico , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Fibrose , Masculino , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Peptídeos/farmacologia , Células RAW 264.7 , Ranidae , Pele/lesões , Pele/metabolismo , Pele/patologia , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta3/metabolismo
18.
Naturwissenschaften ; 109(1): 4, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34874458

RESUMO

The evolution of predatory, anti-predatory, and defensive strategies regarding environmental adaptation in animals is of significant research interest. In particular, amphibians, who represent a transition between aquatic and terrestrial vertebrates, play an important role in animal evolution. The bioactive skin secretions of amphibians are of specific interest due to their involvement in the crucial physiological functions of amphibian skin. We previously isolated and identified several bioactive peptides, including those showing antioxidant, antimicrobial, and wound-healing properties, from the skin secretions of the odorous frog species Odorrana andersonii. Currently, however, the biological significance of skin secretions in O. andersonii survival remains unclear. Here, we studied the biological significance of skin glands and secretions in regard to environmental adaptations of O. andersonii. Our research found that O. andersonii may secrete and excrete bioactive secretions through many glands (peptides and proteins as the main components in glands) distributed in the skin. The skin secretions not only displayed toxicity but also showed antioxidant, antibacterial, and repair promoting activities, suggesting that they play a protective role in O. andersonii when facing environmental threats. These bioactive skin secretions appear to act as a chemical survival strategy in O. andersonii, allowing the species to gain advantages in survival behavior.


Assuntos
Venenos , Animais , Anuros , Ranidae , Pele , Cicatrização
19.
Arch Virol ; 166(8): 2071-2087, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33797621

RESUMO

Coronavirus disease 2019 (COVID-19), defined by the World Health Organization (WHO), has affected more than 50 million patients worldwide and caused a global public health emergency. Therefore, there is a recognized need to identify risk factors for COVID-19 severity and mortality. A systematic search of electronic databases (PubMed, Embase and Cochrane Library) for studies published before September 29, 2020, was performed. Studies that investigated risk factors for progression and mortality in COVID-19 patients were included. A total 344,431 participants from 34 studies were included in this meta-analysis. Regarding comorbidities, cerebrovascular disease (CVD), chronic kidney disease (CKD), coronary heart disease (CHD), and malignancy were associated with an increased risk of progression and mortality in COVID-19 patients. Regarding clinical manifestations, sputum production was associated with a dramatically increased risk of progression and mortality. Hemoptysis was a risk factor for death in COVID-19 patients. In laboratory examinations, increased neutrophil count, decreased lymphocyte count, decreased platelet count, increased C-reactive protein (CRP), coinfection with bacteria or fungi, increased alanine aminotransferase (ALT) and creatine kinase (CK), increased N-terminal pronatriuretic peptide (NT-proBNP), and bilateral pneumonia in CT/X-ray were significantly more frequent in the severe group compared with the non-severe group. Moreover, the proportion of patients with increased CRP and total bilirubin (TBIL) was also significantly higher in the deceased group than in the survival group. CVD, CKD, sputum production, increased neutrophil count, decreased lymphocyte count, decreased platelet count, increased CRP, coinfection with bacteria or fungi, increased ALT and CK, increased NT-proBNP, and bilateral pneumonia in CT/X-ray were associated with an increased risk of progression in COVID-19 patients. Moreover, the proportion of patients with increased sputum production, hemoptysis, CRP and TBIL was also significantly higher in the deceased group.


Assuntos
COVID-19/mortalidade , COVID-19/patologia , Biomarcadores/análise , COVID-19/diagnóstico , COVID-19/epidemiologia , Comorbidade , Progressão da Doença , Humanos , Fatores de Risco , SARS-CoV-2 , Índice de Gravidade de Doença
20.
J Nanobiotechnology ; 19(1): 304, 2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34600530

RESUMO

BACKGROUND: Although the treatments of skin wounds have greatly improved with the increase in therapeutic methods and agents, available interventions still cannot meet the current clinical needs. Therefore, the development of new pro-regenerative therapies remains urgent. Owing to their unique characteristics, both nanomaterials and peptides have provided novel clues for the development of pro-regenerative agents, however, more efforts were still be awaited and anticipated. RESULTS: In the current research, Hollow polydopamine (HPDA) nanoparticles were synthesized and HPDA nanoparticles loading with RL-QN15 (HPDAlR) that was an amphibian-derived peptide with obvious prohealing activities were prepared successfully. The characterization, biodistribution and clearance of both HPDA nanoparticles and HPDAlR were evaluated, the loading efficiency of HPDA against RL-QN15 and the slow-releasing rate of RL-QN15 from HPDAlR were also determined. Our results showed that both HPDA nanoparticles and HPDAlR exerted no obvious toxicity against keratinocyte, macrophage and mice, and HPDA nanoparticles showed no prohealing potency in vivo and in vitro. Interestingly, HPDAlR significantly enhanced the ability of RL-QN15 to accelerate the healing of scratch of keratinocytes and selectively modulate the release of healing-involved cytokines from macrophages. More importantly, in comparison with RL-QN15, by evaluating on animal models of full-thickness injured skin wounds in mice and oral ulcers in rats, HPDAlR showed significant increasing in the pro-regenerative potency of 50 and 10 times, respectively. Moreover, HPDAlR also enhanced the prohealing efficiency of peptide RL-QN15 against skin scald in mice and full-thickness injured wounds in swine. CONCLUSIONS: HPDA obviously enhanced the pro-regenerative potency of RL-QN15 in vitro and in vivo, hence HPDAlR exhibited great potential in the development of therapeutics for skin wound healing.


Assuntos
Fármacos Dermatológicos , Indóis , Nanopartículas , Peptídeos , Polímeros , Cicatrização/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Fármacos Dermatológicos/química , Fármacos Dermatológicos/farmacologia , Fármacos Dermatológicos/toxicidade , Modelos Animais de Doenças , Células HaCaT , Humanos , Indóis/química , Indóis/toxicidade , Masculino , Camundongos , Camundongos Nus , Nanopartículas/química , Nanopartículas/toxicidade , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/toxicidade , Polímeros/química , Polímeros/toxicidade , Células RAW 264.7 , Ratos Sprague-Dawley , Pele/efeitos dos fármacos , Pele/lesões , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA