Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
EMBO Rep ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937629

RESUMO

The EMT-transcription factor ZEB1 is heterogeneously expressed in tumor cells and in cancer-associated fibroblasts (CAFs) in colorectal cancer (CRC). While ZEB1 in tumor cells regulates metastasis and therapy resistance, its role in CAFs is largely unknown. Combining fibroblast-specific Zeb1 deletion with immunocompetent mouse models of CRC, we observe that inflammation-driven tumorigenesis is accelerated, whereas invasion and metastasis in sporadic cancers are reduced. Single-cell transcriptomics, histological characterization, and in vitro modeling reveal a crucial role of ZEB1 in CAF polarization, promoting myofibroblastic features by restricting inflammatory activation. Zeb1 deficiency impairs collagen deposition and CAF barrier function but increases NFκB-mediated cytokine production, jointly promoting lymphocyte recruitment and immune checkpoint activation. Strikingly, the Zeb1-deficient CAF repertoire sensitizes to immune checkpoint inhibition, offering a therapeutic opportunity of targeting ZEB1 in CAFs and its usage as a prognostic biomarker. Collectively, we demonstrate that ZEB1-dependent plasticity of CAFs suppresses anti-tumor immunity and promotes metastasis.

2.
J Pathol ; 254(2): 199-211, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33675037

RESUMO

Osteosarcoma is an often-fatal mesenchyme-derived malignancy in children and young adults. Overexpression of EMT-transcription factors (EMT-TFs) has been associated with poor clinical outcome. Here, we demonstrated that the EMT-TF ZEB1 is able to block osteoblastic differentiation in normal bone development as well as in osteosarcoma cells. Consequently, overexpression of ZEB1 in osteosarcoma characterizes poorly differentiated, highly metastatic subgroups and its depletion induces differentiation of osteosarcoma cells. Overexpression of ZEB1 in osteosarcoma is frequently associated with silencing of the imprinted DLK-DIO3 locus, which encodes for microRNAs targeting ZEB1. Epigenetic reactivation of this locus in osteosarcoma cells reduces ZEB1 expression, induces differentiation, and sensitizes to standard treatment, thus indicating therapeutic options for ZEB1-driven osteosarcomas. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Ósseas/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Osteossarcoma/patologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Desenvolvimento Ósseo , Neoplasias Ósseas/tratamento farmacológico , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Epigenômica , Expressão Gênica , Humanos , Células-Tronco Mesenquimais/patologia , Camundongos , Osteoblastos/patologia , Osteossarcoma/tratamento farmacológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
3.
New Phytol ; 226(6): 1622-1637, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31916258

RESUMO

Land surface models (LSMs) typically use empirical functions to represent vegetation responses to soil drought. These functions largely neglect recent advances in plant ecophysiology that link xylem hydraulic functioning with stomatal responses to climate. We developed an analytical stomatal optimization model based on xylem hydraulics (SOX) to predict plant responses to drought. Coupling SOX to the Joint UK Land Environment Simulator (JULES) LSM, we conducted a global evaluation of SOX against leaf- and ecosystem-level observations. SOX simulates leaf stomatal conductance responses to climate for woody plants more accurately and parsimoniously than the existing JULES stomatal conductance model. An ecosystem-level evaluation at 70 eddy flux sites shows that SOX decreases the sensitivity of gross primary productivity (GPP) to soil moisture, which improves the model agreement with observations and increases the predicted annual GPP by 30% in relation to JULES. SOX decreases JULES root-mean-square error in GPP by up to 45% in evergreen tropical forests, and can simulate realistic patterns of canopy water potential and soil water dynamics at the studied sites. SOX provides a parsimonious way to incorporate recent advances in plant hydraulics and optimality theory into LSMs, and an alternative to empirical stress factors.


Assuntos
Ecossistema , Xilema , Clima , Secas , Florestas , Folhas de Planta , Água
4.
Glob Chang Biol ; 26(12): 6916-6930, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33022860

RESUMO

We apply and compare three widely applicable methods for estimating ecosystem transpiration (T) from eddy covariance (EC) data across 251 FLUXNET sites globally. All three methods are based on the coupled water and carbon relationship, but they differ in assumptions and parameterizations. Intercomparison of the three daily T estimates shows high correlation among methods (R between .89 and .94), but a spread in magnitudes of T/ET (evapotranspiration) from 45% to 77%. When compared at six sites with concurrent EC and sap flow measurements, all three EC-based T estimates show higher correlation to sap flow-based T than EC-based ET. The partitioning methods show expected tendencies of T/ET increasing with dryness (vapor pressure deficit and days since rain) and with leaf area index (LAI). Analysis of 140 sites with high-quality estimates for at least two continuous years shows that T/ET variability was 1.6 times higher across sites than across years. Spatial variability of T/ET was primarily driven by vegetation and soil characteristics (e.g., crop or grass designation, minimum annual LAI, soil coarse fragment volume) rather than climatic variables such as mean/standard deviation of temperature or precipitation. Overall, T and T/ET patterns are plausible and qualitatively consistent among the different water flux partitioning methods implying a significant advance made for estimating and understanding T globally, while the magnitudes remain uncertain. Our results represent the first extensive EC data-based estimates of ecosystem T permitting a data-driven perspective on the role of plants' water use for global water and carbon cycling in a changing climate.


Assuntos
Ecossistema , Transpiração Vegetal , Poaceae , Chuva , Solo , Água
5.
Sci Transl Med ; 15(694): eabn9674, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37134154

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is classified into two key subtypes, classical and basal, with basal PDAC predicting worse survival. Using in vitro drug assays, genetic manipulation experiments, and in vivo drug studies in human patient-derived xenografts (PDXs) of PDAC, we found that basal PDACs were uniquely sensitive to transcriptional inhibition by targeting cyclin-dependent kinase 7 (CDK7) and CDK9, and this sensitivity was recapitulated in the basal subtype of breast cancer. We showed in cell lines, PDXs, and publicly available patient datasets that basal PDAC was characterized by inactivation of the integrated stress response (ISR), which leads to a higher rate of global mRNA translation. Moreover, we identified the histone deacetylase sirtuin 6 (SIRT6) as a critical regulator of a constitutively active ISR. Using expression analysis, polysome sequencing, immunofluorescence, and cycloheximide chase experiments, we found that SIRT6 regulated protein stability by binding activating transcription factor 4 (ATF4) in nuclear speckles and protecting it from proteasomal degradation. In human PDAC cell lines and organoids as well as in murine PDAC genetically engineered mouse models where SIRT6 was deleted or down-regulated, we demonstrated that SIRT6 loss both defined the basal PDAC subtype and led to reduced ATF4 protein stability and a nonfunctional ISR, causing a marked vulnerability to CDK7 and CDK9 inhibitors. Thus, we have uncovered an important mechanism regulating a stress-induced transcriptional program that may be exploited with targeted therapies in particularly aggressive PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Sirtuínas , Humanos , Camundongos , Animais , Quinases Ciclina-Dependentes , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Sirtuínas/genética , Sirtuínas/uso terapêutico , Neoplasias Pancreáticas
6.
Cell Rep ; 41(11): 111819, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516781

RESUMO

The DNA damage response (DDR) and epithelial-to-mesenchymal transition (EMT) are two crucial cellular programs in cancer biology. While the DDR orchestrates cell-cycle progression, DNA repair, and cell death, EMT promotes invasiveness, cellular plasticity, and intratumor heterogeneity. Therapeutic targeting of EMT transcription factors, such as ZEB1, remains challenging, but tumor-promoting DDR alterations elicit specific vulnerabilities. Using multi-omics, inhibitors, and high-content microscopy, we discover a chemoresistant ZEB1-high-expressing sub-population (ZEB1hi) with co-rewired cell-cycle progression and proficient DDR across tumor entities. ZEB1 stimulates accelerated S-phase entry via CDK6, inflicting endogenous DNA replication stress. However, DDR buildups involving constitutive MRE11-dependent fork resection allow homeostatic cycling and enrichment of ZEB1hi cells during transforming growth factor ß (TGF-ß)-induced EMT and chemotherapy. Thus, ZEB1 promotes G1/S transition to launch a progressive DDR benefitting stress tolerance, which concurrently manifests a targetable vulnerability in chemoresistant ZEB1hi cells. Our study thus highlights the translationally relevant intercept of the DDR and EMT.


Assuntos
Fatores de Transcrição , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Fatores de Transcrição/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Replicação do DNA
7.
Nat Food ; 2(11): 873-885, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-37117503

RESUMO

Potential climate-related impacts on future crop yield are a major societal concern. Previous projections of the Agricultural Model Intercomparison and Improvement Project's Global Gridded Crop Model Intercomparison based on the Coupled Model Intercomparison Project Phase 5 identified substantial climate impacts on all major crops, but associated uncertainties were substantial. Here we report new twenty-first-century projections using ensembles of latest-generation crop and climate models. Results suggest markedly more pessimistic yield responses for maize, soybean and rice compared to the original ensemble. Mean end-of-century maize productivity is shifted from +5% to -6% (SSP126) and from +1% to -24% (SSP585)-explained by warmer climate projections and improved crop model sensitivities. In contrast, wheat shows stronger gains (+9% shifted to +18%, SSP585), linked to higher CO2 concentrations and expanded high-latitude gains. The 'emergence' of climate impacts consistently occurs earlier in the new projections-before 2040 for several main producing regions. While future yield estimates remain uncertain, these results suggest that major breadbasket regions will face distinct anthropogenic climatic risks sooner than previously anticipated.

8.
Nat Commun ; 11(1): 4644, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934243

RESUMO

Sub-Saharan Africa (SSA) is home to approximately » of the global livestock population, which in the last 60 years has increased by factors of 2.5-4 times for cattle, goats and sheep. An important resource for pastoralists, most livestock live in semi-arid and arid environments, where they roam during the day and are kept in enclosures (or bomas) during the night. Manure, although rich in nitrogen, is rarely used, and therefore accumulates in bomas over time. Here we present in-situ measurements of N2O fluxes from 46 bomas in Kenya and show that even after 40 years following abandonment, fluxes are still ~one magnitude higher than those from adjacent savanna sites. Using maps of livestock distribution, we scaled our finding to SSA and found that abandoned bomas are significant hotspots for atmospheric N2O at the continental scale, contributing ~5% of the current estimate of total anthropogenic N2O emissions for all of Africa.

9.
Sci Total Environ ; 642: 292-306, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29902627

RESUMO

Simulation models quantify the impacts on carbon (C) and nitrogen (N) cycling in grassland systems caused by changes in management practices. To support agricultural policies, it is however important to contrast the responses of alternative models, which can differ greatly in their treatment of key processes and in their response to management. We applied eight biogeochemical models at five grassland sites (in France, New Zealand, Switzerland, United Kingdom and United States) to compare the sensitivity of modelled C and N fluxes to changes in the density of grazing animals (from 100% to 50% of the original livestock densities), also in combination with decreasing N fertilization levels (reduced to zero from the initial levels). Simulated multi-model median values indicated that input reduction would lead to an increase in the C sink strength (negative net ecosystem C exchange) in intensive grazing systems: -64 ±â€¯74 g C m-2 yr-1 (animal density reduction) and -81 ±â€¯74 g C m-2 yr-1 (N and animal density reduction), against the baseline of -30.5 ±â€¯69.5 g C m-2 yr-1 (LSU [livestock units] ≥ 0.76 ha-1 yr-1). Simulations also indicated a strong effect of N fertilizer reduction on N fluxes, e.g. N2O-N emissions decreased from 0.34 ±â€¯0.22 (baseline) to 0.1 ±â€¯0.05 g N m-2 yr-1 (no N fertilization). Simulated decline in grazing intensity had only limited impact on the N balance. The simulated pattern of enteric methane emissions was dominated by high model-to-model variability. The reduction in simulated offtake (animal intake + cut biomass) led to a doubling in net primary production per animal (increased by 11.6 ±â€¯8.1 t C LSU-1 yr-1 across sites). The highest N2O-N intensities (N2O-N/offtake) were simulated at mown and extensively grazed arid sites. We show the possibility of using grassland models to determine sound mitigation practices while quantifying the uncertainties associated with the simulated outputs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA