Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 160(16)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38656602

RESUMO

Molecular anisotropy plays an important role in the glass transition of a liquid. Recently, a novel bulk glass state has been discovered by optical microscopy experiments on suspensions of ellipsoidal colloids. "Liquid glass" is a disordered analog of a nematic liquid crystal, in which rotation motion is hindered but particles diffuse freely. Global nematic order is suppressed as clusters of aligned particles intertwine. We perform Brownian dynamics simulations to test the structure and dynamics of a dense system of soft ellipsoidal particles. As seen in the experiments and in accordance with predictions from the mode coupling theory, on the time scale of our simulations, rotation motion is frozen but translation motion persists in liquid glass. Analyses of the dynamic structure functions for translation and rotation corroborates the presence of two separate glass transitions for rotation and translation, respectively. Even though the equilibrium state should be nematic, aligned structures remain small and orientational order rapidly decays with increasing size. Long-wavelength fluctuations are remnants of the isotropic-nematic transition.

2.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33397813

RESUMO

Despite the omnipresence of colloidal suspensions, little is known about the influence of colloid shape on phase transformations, especially in nonequilibrium. To date, real-space imaging results at high concentrations have been limited to systems composed of spherical colloids. In most natural and technical systems, however, particles are nonspherical, and their structural dynamics are determined by translational and rotational degrees of freedom. Using confocal microscopy of fluorescently labeled core-shell particles, we reveal that suspensions of ellipsoidal colloids form an unexpected state of matter, a liquid glass in which rotations are frozen while translations remain fluid. Image analysis unveils hitherto unknown nematic precursors as characteristic structural elements of this state. The mutual obstruction of these ramified clusters prevents liquid crystalline order. Our results give insight into the interplay between local structures and phase transformations. This helps to guide applications such as self-assembly of colloidal superstructures and also gives evidence of the importance of shape on the glass transition in general.

3.
Phys Rev Lett ; 130(23): 236101, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37354405

RESUMO

We investigate the vibrational properties of topologically disordered materials by analytically studying particles that harmonically oscillate around random positions. Exploiting classical field theory in the thermodynamic limit at T=0, we build up a self-consistent model by analyzing the Hessian utilizing Euclidean random matrix theory. In accordance with earlier findings [T. S. Grigera et al.J. Stat. Mech. (2011) P02015.JSMTC61742-546810.1088/1742-5468/2011/02/P02015], we take nonplanar diagrams into account to correctly address multiple local scattering events. By doing so, we end up with a first principles theory that can predict the main anomalies of athermal disordered materials, including the boson peak, sound softening, and Rayleigh damping of sound. In the vibrational density of states, the sound modes lead to Debye's law for small frequencies. Additionally, an excess appears in the density of states starting as ω^{4} in the low frequency limit, which is attributed to (quasi-) localized modes.


Assuntos
Temperatura Baixa , Vibração , Temperatura , Eritromicina , Termodinâmica
4.
J Chem Phys ; 158(4): 044902, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36725527

RESUMO

We study the effect of particle mobility on phase transitions in a spin fluid in two dimensions. The presence of a phase transition of the BKT universality class is shown in an off-lattice model of particles with purely repulsive interaction employing computer simulations. A critical spin wave region 0 < T < TBKT is found with a nonuniversal exponent η(T) that follows the shape suggested by BKT theory, including a critical value consistent with ηBKT = 1/4. One can observe a transition from power-law decay to exponential decay in the static correlation functions at the transition temperature TBKT, which is supported by finite-size scaling analysis. A critical temperature TBKT = 0.17(1) is suggested. Investigations into the dynamic aspects of the phase transition are carried out. The short-time behavior of the incoherent spin autocorrelation function agrees with the Nelson-Fisher prediction, whereas the long-time behavior differs from the finite-size scaling known for the static XY model. Analysis of coherent spin wave dynamics shows that the spin wave peak is a propagating mode that can be reasonably well fitted by hydrodynamic theory. The mobility of the particles strongly enhances damping of the spin waves, but the model still lies within the dynamic universality class of the standard XY model.

5.
J Chem Phys ; 158(2): 024901, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641417

RESUMO

The motion of a colloidal probe in a viscoelastic fluid is described by friction or mobility, depending on whether the probe is moving with a velocity or feeling a force. While the Einstein relation describes an inverse relationship valid for Newtonian solvents, both concepts are generalized to time-dependent memory kernels in viscoelastic fluids. We theoretically and experimentally investigate their relation by considering two observables: the recoil after releasing a probe that was moved through the fluid and the equilibrium mean squared displacement (MSD). Applying concepts of linear response theory, we generalize Einstein's relation and, thereby, relate recoil and MSD, which both provide access to the mobility kernel. With increasing concentration, however, MSD and recoil show distinct behaviors, rooted in different behaviors of the two kernels. Using two theoretical models, a linear two-bath particle model, and hard spheres treated by mode coupling theory, we find a Volterra relation between the two kernels, explaining differing timescales in friction and mobility kernels under variation of concentration.


Assuntos
Modelos Teóricos , Fricção , Movimento (Física)
6.
Appl Opt ; 62(2): 440-446, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36630244

RESUMO

Controlling the delivery of kHz-class pulsed lasers is of interest in a variety of industrial and scientific applications, from next-generation laser-plasma acceleration to laser-based x-ray emission and high-precision manufacturing. The transverse position of the laser pulse train on the application target is often subject to fluctuations by external drivers (e.g., room cooling and heating systems, motorized optics stages and mounts, vacuum systems, chillers, and/or ground vibrations). For typical situations where the disturbance spectrum exhibits discrete peaks on top of a broad-bandwidth lower-frequency background, traditional PID (proportional-integral-derivative) controllers may struggle, since as a general rule PID controllers can be used to suppress vibrations up to only about 5%-10% of the sampling frequency. Here, a predictive feed-forward algorithm is presented that significantly enhances the stabilization bandwidth in such laser systems (up to the Nyquist limit at half the sampling frequency) by online identification and filtering of one or a few discrete frequencies using optimized Fourier filters. Furthermore, the system architecture demonstrated here uses off-the-shelf CMOS cameras and piezo-electric actuated mirrors connected to a standard PC to process the alignment images and implement the algorithm. To avoid high-end, high-cost components, a machine-learning-based model of the piezo mirror's dynamics was integrated into the system, which enables high-precision positioning by compensating for hysteresis and other hardware-induced effects. A successful demonstration of the method was performed on a 1 kHz laser pulse train, where externally-induced vibrations of up to 400 Hz were attenuated by a factor of five, far exceeding what could be done with a standard PID scheme.

7.
FASEB J ; 35(12): e22066, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34822203

RESUMO

Rotator cuff tendon injuries often occur at the tendon-to-bone interface (i.e., enthesis) area, with a high prevalence for the elderly population, but the underlying reason for this phenomenon is still unknown. The objective of this study is to identify the histological, molecular, and biomechanical alterations of the rotator cuff enthesis with maturation and aging in a mouse model. Four different age groups of mice (newborn, young, adult, and old) were studied. Striking variations of the entheses were observed between the newborn and other matured groups, with collagen content, proteoglycan deposition, collagen fiber dispersion was significantly higher in the newborn group. The compositional and histological features of young, adult, and old groups did not show significant differences, except having increased proteoglycan deposition and thinner collagen fibers at the insertion sites in the old group. Nanoindentation testing showed that the old group had a smaller compressive modulus at the insertion site when compared with other groups. However, tensile mechanical testing reported that the old group demonstrated a significantly higher failure stress when compared with the young and adult groups. The proteomics analysis detected dramatic differences in protein content between newborn and young groups but minor changes among young, adult, and old groups. These results demonstrated: (1) the significant alterations of the enthesis composition and structure occur from the newborn to the young time period; (2) the increased risk of rotator cuff tendon injuries in the elderly population is not solely because of old age alone in the rodent model.


Assuntos
Envelhecimento , Osso e Ossos/patologia , Proteoglicanas/metabolismo , Proteoma/metabolismo , Lesões do Manguito Rotador/patologia , Manguito Rotador/patologia , Tendões/patologia , Fatores Etários , Animais , Fenômenos Biomecânicos , Osso e Ossos/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Camundongos , Manguito Rotador/metabolismo , Lesões do Manguito Rotador/etiologia , Lesões do Manguito Rotador/metabolismo , Tendões/metabolismo , Cicatrização
8.
J Chem Phys ; 156(6): 064501, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35168358

RESUMO

In complex crystals close to melting or at finite temperatures, different types of defects are ubiquitous and their role becomes relevant in the mechanical response of these solids. Conventional elasticity theory fails to provide a microscopic basis to include and account for the motion of point defects in an otherwise ordered crystalline structure. We study the elastic properties of a point-defect rich crystal within a first principles theoretical framework derived from the microscopic equations of motion. This framework allows us to make specific predictions pertaining to the mechanical properties that we can validate through deformation experiments performed in molecular dynamics simulations.

9.
Oral Dis ; 28(3): 568-576, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33583133

RESUMO

BACKGROUND AND PURPOSE: Rhino-orbito-cerebral mucormycosis (ROCM) is a rare and potentially fatal invasive fungal infection which usually occurs in diabetic and other immunocompromised patients. This infection is associated with high morbidity and mortality rates. Prompt diagnosis and rapid aggressive surgical debridement and antimycotic therapy are essential for the patient's survival. Herein, we reviewed the localization and treatment strategies in patients with ROCM and diabetes as an underlying condition. Furthermore, we report one case of ROCM in our department. MATERIALS AND METHODS: From 117 identified studies published in PubMed, 14 publications-containing data from 54 patients-were included. All patients were diagnosed clinically and by histopathological and/or bacteriological analysis for ROCM caused by the order Mucorales. CONCLUSION: Uncontrolled diabetes mellitus is one of the main risk factors for ROCM. A successful management of ROCM requires an early diagnosis, a prompt systemic antifungal therapy, and a rapid aggressive surgical debridement including exploration of the pterygopalatine fossa. An orbital exenteration may be necessary.


Assuntos
Diabetes Mellitus , Mucormicose , Doenças Orbitárias , Antifúngicos/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Humanos , Hospedeiro Imunocomprometido , Mucormicose/complicações , Mucormicose/diagnóstico , Mucormicose/terapia , Doenças Orbitárias/diagnóstico , Doenças Orbitárias/microbiologia , Doenças Orbitárias/terapia
10.
Eur Phys J E Soft Matter ; 43(11): 70, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33190209

RESUMO

We determine the non-local stress autocorrelation tensor in an homogeneous and isotropic system of interacting Brownian particles starting from the Smoluchowski equation of the configurational probability density. In order to relate stresses to particle displacements as appropriate in viscoelastic states, we go beyond the usual hydrodynamic description obtained in the Zwanzig-Mori projection-operator formalism by introducing the proper irreducible dynamics following Cichocki and Hess, and Kawasaki. Differently from these authors, we include transverse contributions as well. This recovers the expression for the stress autocorrelation including the elastic terms in solid states as found for Newtonian and Langevin systems, in case that those are evaluated in the overdamped limit. Finally, we argue that the found memory function reduces to the shear and bulk viscosity in the hydrodynamic limit of smooth and slow fluctuations and derive the corresponding hydrodynamic equations.

11.
Phys Rev Lett ; 122(10): 108002, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30932679

RESUMO

We study experimentally the origin of heterogeneous dynamics in strongly driven glass-forming systems. Thereto, we apply a well-defined force with a laser line trap on individual colloidal polystyrene probe particles seeded in an emulsion glass composed of droplets of the same size. Fluid and glass states can be probed. We monitor the trajectories of the probe and measure displacements and their distributions. Our experiments reveal intermittent dynamics around a depinning transition at a threshold force. For smaller forces, linear response connects mean displacement, and quiescent mean squared displacement. Mode coupling theory calculations rationalize the observations.

12.
Phys Rev Lett ; 121(14): 148002, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30339456

RESUMO

Considering a granular fluid of inelastic smooth hard spheres, we discuss the conditions delineating the rheological regimes comprising Newtonian, Bagnoldian, shear thinning, and shear thickening behavior. Developing a kinetic theory, valid at finite shear rates and densities around the glass transition density, we predict the viscosity and Bagnold coefficient at practically relevant values of the control parameters. The determination of full flow curves relating the shear stress σ to the shear rate γ[over ˙] and predictions of the yield stress complete our discussion of granular rheology derived from first principles.

13.
J Chem Phys ; 149(8): 084502, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30193479

RESUMO

We develop a generalized hydrodynamic theory, which can account for the build-up of long-ranged and long-lived shear stress correlations in supercooled liquids as the glass transition is approached. Our theory is based on the decomposition of tensorial stress relaxation into fast microscopic processes and slow dynamics due to conservation laws. In the fluid, anisotropic shear stress correlations arise from the tensorial nature of stress. By approximating the fast microscopic processes by a single relaxation time in the spirit of Maxwell, we find viscoelastic precursors of the Eshelby-type correlations familiar in an elastic medium. The spatial extent of shear stress fluctuations is characterized by a correlation length ξ which grows like the viscosity η or time scale τ ∼ η, whose divergence signals the glass transition. In the solid, the correlation length is infinite and stress correlations decay algebraically as r-d in d dimensions.

14.
Anal Chem ; 89(12): 6341-6345, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28570048

RESUMO

Online studies of single airborne particles represent a demanding challenge in aerosol chemistry. New technologies that help to unravel the role of ambient aerosols in earth climate and to assess local and specific health risks from air pollution are highly desired. Of particular relevance are polycyclic aromatic hydrocarbons (PAHs) from combustion processes that are associated with both acute and long-term health effects. Usually, online single particle analyses apply laser desorption/ionization (LDI) in a bipolar mass spectrometer, revealing elemental constituents and limited molecular information by detection of both positive and negative ions. Approaches for the detection of PAHs from single particles have been developed but the elemental information from LDI that allows particle classification and source apportionment is lost in that case. Here we present a novel laser desorption and ionization method delivering both the PAH-profile and the inorganic composition from the same, individual particle. Test measurements demonstrate the technique's capability to reveal the single-particle PAH-distribution in aerosols (mixing state) and its assignment to specific pollution sources in a new and direct way.

15.
Phys Rev Lett ; 119(26): 265701, 2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29328698

RESUMO

A theory for the nonlocal shear stress correlations in supercooled liquids is derived from first principles. It captures the crossover from viscous to elastic dynamics at an idealized liquid to glass transition and explains the emergence of long-ranged stress correlations in glass, as expected from classical continuum elasticity. The long-ranged stress correlations can be traced to the coupling of shear stress to transverse momentum, which is ignored in the classic Maxwell model. To rescue this widely used model, we suggest a generalization in terms of a single relaxation time τ for the fast degrees of freedom only. This generalized Maxwell model implies a divergent correlation length ξ∝τ as well as dynamic critical scaling and correctly accounts for the far-field stress correlations. It can be rephrased in terms of generalized hydrodynamic equations, which naturally couple stress and momentum and furthermore allow us to connect to fluidity and elastoplastic models.

16.
Phys Rev Lett ; 117(20): 208002, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27886484

RESUMO

Investigations of strain correlations at the glass transition reveal unexpected phenomena. The shear strain fluctuations show an Eshelby-strain pattern [∼cos(4θ)/r^{2}], characteristic of elastic response, even in liquids, at long times. We address this using a mode-coupling theory for the strain fluctuations in supercooled liquids and data from both video microscopy of a two-dimensional colloidal glass former and simulations of Brownian hard disks. We show that the long-ranged and long-lived strain signatures follow a scaling law valid close to the glass transition. For large enough viscosities, the Eshelby-strain pattern is visible even on time scales longer than the structural relaxation time τ and after the shear modulus has relaxed to zero.

17.
Soft Matter ; 12(43): 8825-8832, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27752694

RESUMO

The leading nonlinear stress response in a periodically strained concentrated colloidal dispersion is studied experimentally and by theory. A thermosensitive microgel dispersion serves as well-characterized glass-forming model, where the stress response at the first higher harmonic frequency (3ω for strain at frequency ω) is investigated in the limit of small amplitude. The intrinsic nonlinearity at the third harmonic exhibits a scaling behavior which has a maximum in an intermediate frequency window and diverges when approaching the glass transition. It captures the (in-) stability of the transient elastic structure. Elastic stresses in-phase with the third power of the strain dominate the scaling. Our results qualitatively differ from previously derived scaling behavior in dielectric spectroscopy of supercooled molecular liquids. This might indicate a dependence of the nonlinear response on the symmetry of the external driving under time reversal.

18.
J Chem Phys ; 143(3): 034505, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26203034

RESUMO

We employ x-ray scattering on sheared colloidal suspensions and mode coupling theory to study structure factor distortions of glass-forming systems under shear. We find a transition from quadrupolar elastic distortion at small strains to quadrupolar and hexadecupolar modes in the stationary state. The latter are interpreted as signatures of plastic rearrangements in homogeneous, thermalized systems. From their transient evolution with strain, we identify characteristic strain and length-scale values where these plastic rearrangements dominate. This characteristic strain coincides with the maximum of the shear stress versus strain curve, indicating the proliferation of plastic flow. The hexadecupolar modes dominate at the wavevector of the principal peak of the equilibrium structure factor that is related to the cage-effect in mode coupling theory. We hence identify the structural signature of plastic flow of glasses.

19.
Phys Rev E ; 109(1-1): 014120, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38366508

RESUMO

We study the spectrum of a system of coupled disordered harmonic oscillators in the thermodynamic limit. This Euclidean random matrix ensemble has been suggested as a model for the low temperature vibrational properties of glass. Exact numerical diagonalization is performed in three and two spatial dimensions, which is accompanied by a detailed finite size analysis. It reveals a low-frequency regime of sound waves that are damped by Rayleigh scattering. At large frequencies localized modes exist. In between, the central peak in the vibrational density of states is well described by Wigner's semicircle law for not too large disorder, as is expected for simple random matrix systems. We compare our results with predictions from two recent self-consistent field theories.

20.
Med Klin Intensivmed Notfmed ; 119(1): 71-81, 2024 Feb.
Artigo em Alemão | MEDLINE | ID: mdl-37989878

RESUMO

Patient handovers are a vital juncture in the flow of medical information, and regardless of the mode of handover-oral, written, or combined-it often poses a risk of information loss. This could potentially jeopardize patient safety and influences subsequent treatment. The exchange of information in emergency care settings between paramedics and emergency personnel is particularly prone to errors due to situational specifics such as high ambient noise, the involvement of multiple disciplines, and the need for urgent decision-making in life-threatening situations. As handover training is not yet universally incorporated into education and ongoing training programs, there is a high degree of variability in how it is carried out in practice. However, strategies aimed at enhancing the handover process carry substantial potential for improving staff satisfaction, process quality, and possibly even having a positive prognostic impact.


Assuntos
Serviços Médicos de Emergência , Transferência da Responsabilidade pelo Paciente , Humanos , Serviço Hospitalar de Emergência , Comunicação , Atitude do Pessoal de Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA