Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Phys Chem Chem Phys ; 25(33): 22336-22344, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37580966

RESUMO

The excited states of carotenoids have been a subject of numerous studies. While a majority of these reports target the excited state dynamics initiated by the excitation of the S2 state, the upper excited state(s) absorbing in the UV spectral region (denoted as SUV) has been only scarcely studied. Moreover, the relation between the SUV and Sn, the final state of the well-known S1-Sn transition of carotenoids, remains unknown. To address this yet-unresolved issue, we compared the excited state dynamics of two carotenoids, namely, ß-carotene and astaxanthin, after excitation of either the SUV or Sn state. The SUV state was excited directly by UV light, and the excitation of the Sn state was achieved via re-pumping the S1-Sn transition. The results indicated that direct SUV excitation produces an S1-Sn band that is significantly broader than that obtained after S2 excitation, most probably due to the generation of multiple S1 conformations produced by excess energy. No such broadening is observed if the Sn state is excited by the re-pump pulse. This shows that the Sn and SUV states are different, each initializing a specific relaxation pathway. We propose that the Sn state retains the coupled triplet pair character of the S1 state, while the SUV state is the higher state of Bu+ symmetry accessible by one-photon transition.

2.
Photosynth Res ; 154(1): 75-87, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36066816

RESUMO

The functions of both (bacterio) chlorophylls and carotenoids in light-harvesting complexes have been extensively studied during the past decade, yet, the involvement of BChl a high-energy Soret band in the cascade of light-harvesting processes still remains a relatively unexplored topic. Here, we present transient absorption data recorded after excitation of the Soret band in the LH2 complex from Rhodoblastus acidophilus. Comparison of obtained data to those recorded after excitation of rhodopin glucoside and B800 BChl a suggests that no Soret-to-Car energy transfer pathway is active in LH2 complex. Furthermore, a spectrally rich pattern observed in the spectral region of rhodopin glucoside ground state bleaching (420-550 nm) has been assigned to an electrochromic shift. The results of global fitting analysis demonstrate two more features. A 6 ps component obtained exclusively after excitation of the Soret band has been assigned to the response of rhodopin glucoside to excess energy dissipation in LH2. Another time component, ~ 450 ps, appearing independently of the excitation wavelength was assigned to BChl a-to-Car triplet-triplet transfer. Presented data demonstrate several new features of LH2 complex and its behavior following the excitation of the Soret band.


Assuntos
Carotenoides , Complexos de Proteínas Captadores de Luz , Bacterioclorofilas/metabolismo , Beijerinckiaceae , Carotenoides/metabolismo , Glucosídeos , Complexos de Proteínas Captadores de Luz/metabolismo
3.
PLoS Biol ; 15(12): e2003943, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29253871

RESUMO

The majority of life on Earth depends directly or indirectly on the sun as a source of energy. The initial step of photosynthesis is facilitated by light-harvesting complexes, which capture and transfer light energy into the reaction centers (RCs). Here, we analyzed the organization of photosynthetic (PS) complexes in the bacterium G. phototrophica, which so far is the only phototrophic representative of the bacterial phylum Gemmatimonadetes. The isolated complex has a molecular weight of about 800 ± 100 kDa, which is approximately 2 times larger than the core complex of Rhodospirillum rubrum. The complex contains 62.4 ± 4.7 bacteriochlorophyll (BChl) a molecules absorbing in 2 distinct infrared absorption bands with maxima at 816 and 868 nm. Using femtosecond transient absorption spectroscopy, we determined the energy transfer time between these spectral bands as 2 ps. Single particle analyses of the purified complexes showed that they were circular structures with an outer diameter of approximately 18 nm and a thickness of 7 nm. Based on the obtained, we propose that the light-harvesting complexes in G. phototrophica form 2 concentric rings surrounding the type 2 RC. The inner ring (corresponding to the B868 absorption band) is composed of 15 subunits and is analogous to the inner light-harvesting complex 1 (LH1) in purple bacteria. The outer ring is composed of 15 more distant BChl dimers with no or slow energy transfer between them, resulting in the B816 absorption band. This completely unique and elegant organization offers good structural stability, as well as high efficiency of light harvesting. Our results reveal that while the PS apparatus of Gemmatimonadetes was acquired via horizontal gene transfer from purple bacteria, it later evolved along its own pathway, devising a new arrangement of its light harvesting complexes.


Assuntos
Proteínas de Bactérias/química , Complexos de Proteínas Captadores de Luz/química , Fotossíntese/fisiologia , Bactérias/classificação , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Transferência Genética Horizontal , Filogenia
4.
Photochem Photobiol Sci ; 19(4): 495-503, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32236233

RESUMO

The keto-carotenoid deinoxanthin, which occurs in the UV-resistant bacterium Deinococcus radiodurans, has been investigated by ultrafast time-resolved spectroscopy techniques. We have explored the excited-state properties of deinoxanthin in solution and bound to the S-layer Deinoxanthin Binding Complex (SDBC), a protein complex important for UV resistance and thermostability of the organism. Binding of deinoxanthin to SDBC shifts the absorption spectrum to longer wavelengths, but excited-state dynamics remain unaffected. The lifetime of the lowest excited state (S1) of isolated deinoxanthin in methanol is 2.1 ps. When bound to SDBC, the S1 lifetime is 2.4 ps, indicating essentially no alteration of the effective conjugation length upon binding. Moreover, our data show that the conformational disorder in both ground and excited states is the same for deinoxanthin in methanol and bound to SDBC. Our results thus suggest a rather loosely bound carotenoid in SDBC, making it very distinct from other carotenoid-binding proteins such as Orange Carotenoid Protein (OCP) or crustacyanin, both of which significantly restrain the carotenoid at the binding site. Three deinoxanthin analogs were found to bind the SDBC, suggesting a non-selective binding site of deinoxanthin in SDBC.


Assuntos
Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Deinococcus/química , Proteínas de Bactérias/química , Sítios de Ligação , Carotenoides/química , Deinococcus/metabolismo , Estrutura Molecular , Processos Fotoquímicos
5.
Inorg Chem ; 59(23): 17058-17070, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33166444

RESUMO

We present the first examples of alkylated derivatives of the macropolyhedral boron hydride, anti-B18H22, which is the gain medium in the first borane laser. This new series of ten highly stable and colorless organic-inorganic hybrid clusters are capable of the conversion of UVA irradiation to blue light with fluorescence quantum yields of unity. This study gives a comprehensive description of their synthesis, isolation, and structural characterization together with a delineation of their photophysical properties using a combined theoretical and experimental approach. Treatment of anti-B18H22 1 with RI (where R = Me or Et) in the presence of AlCl3 gives a series of alkylated derivatives, Rx-anti-B18H22-x (where x = 2 to 6), compounds 2-6, in which the 18-vertex octadecaborane cluster architectures are preserved and yet undergo a linear "polyhedral swelling", depending on the number of cluster alkyl substituents. The use of dichloromethane solvent in the synthetic procedure leads to dichlorination of the borane cluster and increased alkylation to give Me11-anti-B18H9Cl2 11, Me12-anti-B18H8Cl2 12, and Me13-anti-B18H7Cl2 13. All new alkyl derivatives are highly stable, extremely efficient (ΦF = 0.76-1.0) blue fluorophores (λems = 423-427 nm) and are soluble in a wide range of organic solvents and also a polystyrene matrix. The Et4-anti-B18H18 derivative 4b crystallizes from pentane solution in two phases with consequent multiabsorption and multiemission photophysical properties. An ultrafast transient UV-vis absorption spectroscopic study of compounds 4a and 4b reveals that an efficient excited-state absorption at the emission wavelength inhibits the laser performance of these otherwise remarkable luminescent molecules. All these new compounds add to the growing portfolio of octadecaborane-based luminescent species, and in an effort to broaden the perspective on their highly emissive photophysical properties, we highlight emerging patterns that successive substitutions have on the molecular size of the 18-vertex borane cluster structure and the distribution of the electron density within.

6.
Biochim Biophys Acta Bioenerg ; 1859(5): 357-365, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29499185

RESUMO

We have applied femtosecond transient absorption spectroscopy in pump-probe and pump-dump-probe regimes to study energy transfer between fucoxanthin and Chl a in fucoxanthin-Chl a complex from the pennate diatom Phaeodactylum tricornutum. Experiments were carried out at room temperature and 77 K to reveal temperature dependence of energy transfer. At both temperatures, the ultrafast (<100 fs) energy transfer channel from the fucoxanthin S2 state is active and is complemented by the second pathway via the combined S1/ICT state. The S1/ICT-Chl a pathway has two channels, the fast one characterized by sub-picosecond energy transfer, and slow having time constants of 4.5 ps at room temperature and 6.6 ps at 77 K. The overall energy transfer via the S1/ICT is faster at 77 K, because the fast component gains amplitude upon lowering the temperature. The pump-dump-probe regime, with the dump pulse centered in the spectral region of ICT stimulated emission at 950 nm and applied at 2 ps after excitation, proved that the S1 and ICT states of fucoxanthin in FCP are individual, yet coupled entities. Analysis of the pump-dump-probe data suggested that the main energy donor in the slow S1/ICT-Chl a route is the S1 part of the S1/ICT potential surface.


Assuntos
Clorofila/química , Diatomáceas/química , Espectrofotometria Atômica , Xantofilas/química , Clorofila A
7.
Photosynth Res ; 131(1): 105-117, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27612863

RESUMO

A quenching mechanism mediated by the orange carotenoid protein (OCP) is one of the ways cyanobacteria protect themselves against photooxidative stress. Here, we present a femtosecond spectroscopic study comparing OCP and RCP (red carotenoid protein) samples binding different carotenoids. We confirmed significant changes in carotenoid configuration upon OCP activation reported by Leverenz et al. (Science 348:1463-1466. doi: 10.1126/science.aaa7234 , 2015) by comparing the transient spectra of OCP and RCP. The most important marker of these changes was the magnitude of the transient signal associated with the carotenoid intramolecular charge-transfer (ICT) state. While OCP with canthaxanthin exhibited a weak ICT signal, it increased significantly for canthaxanthin bound to RCP. On the contrary, a strong ICT signal was recorded in OCP binding echinenone excited at the red edge of the absorption spectrum. Because the carbonyl oxygen responsible for the appearance of the ICT signal is located at the end rings of both carotenoids, the magnitude of the ICT signal can be used to estimate the torsion angles of the end rings. Application of two different excitation wavelengths to study OCP demonstrated that the OCP sample contains two spectroscopically distinct populations, none of which is corresponding to the photoactivated product of OCP.


Assuntos
Carotenoides/análise , Cianobactérias/química , Análise Espectral/métodos
8.
Biochim Biophys Acta ; 1837(10): 1748-55, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24928296

RESUMO

We report on energy transfer pathways in the main light-harvesting complex of photosynthetic relative of apicomplexan parasites, Chromera velia. This complex, denoted CLH, belongs to the family of FCP proteins and contains chlorophyll (Chl) a, violaxanthin, and the so far unidentified carbonyl carotenoid related to isofucoxanthin. The overall carotenoid-to-Chl-a energy transfer exhibits efficiency over 90% which is the largest among the FCP-like proteins studied so far. Three spectroscopically different isofucoxanthin-like molecules were identified in CLH, each having slightly different energy transfer efficiency that increases from isofucoxanthin-like molecules absorbing in the blue part of the spectrum to those absorbing in the reddest part of spectrum. Part of the energy transfer from carotenoids proceeds via the ultrafast S2 channel of both the violaxanthin and isofucoxanthin-like carotenoid, but major energy transfer pathway proceeds via the S1/ICT state of the isofucoxanthin-like carotenoid. Two S1/ICT-mediated channels characterized by time constants of ~0.5 and ~4ps were found. For the isofucoxanthin-like carotenoid excited at 480nm the slower channel dominates, while those excited at 540nm employs predominantly the fast 0.5ps channel. Comparing these data with the excited-state properties of the isofucoxanthin-like carotenoid in solution we conclude that, contrary to other members of the FCP family employing carbonyl carotenoids, CLH complex suppresses the charge transfer character of the S1/ICT state of the isofucoxanthin-like carotenoid to achieve the high carotenoid-to-Chl-a energy transfer efficiency.


Assuntos
Alveolados/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Transferência de Energia , Complexos de Proteínas Captadores de Luz/metabolismo , Clorofila A , Espectrometria de Fluorescência
9.
J Biol Chem ; 287(50): 41820-34, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23066020

RESUMO

Plants are particularly prone to photo-oxidative damage caused by excess light. Photoprotection is essential for photosynthesis to proceed in oxygenic environments either by scavenging harmful reactive intermediates or preventing their accumulation to avoid photoinhibition. Carotenoids play a key role in protecting photosynthesis from the toxic effect of over-excitation; under excess light conditions, plants accumulate a specific carotenoid, zeaxanthin, that was shown to increase photoprotection. In this work we genetically dissected different components of zeaxanthin-dependent photoprotection. By using time-resolved differential spectroscopy in vivo, we identified a zeaxanthin-dependent optical signal characterized by a red shift in the carotenoid peak of the triplet-minus-singlet spectrum of leaves and pigment-binding proteins. By fractionating thylakoids into their component pigment binding complexes, the signal was found to originate from the monomeric Lhcb4-6 antenna components of Photosystem II and the Lhca1-4 subunits of Photosystem I. By analyzing mutants based on their sensitivity to excess light, the red-shifted triplet-minus-singlet signal was tightly correlated with photoprotection in the chloroplasts, suggesting the signal implies an increased efficiency of zeaxanthin in controlling chlorophyll triplet formation. Fluorescence-detected magnetic resonance analysis showed a decrease in the amplitude of signals assigned to chlorophyll triplets belonging to the monomeric antenna complexes of Photosystem II upon zeaxanthin binding; however, the amplitude of carotenoid triplet signal does not increase correspondingly. Results show that the high light-induced binding of zeaxanthin to specific proteins plays a major role in enhancing photoprotection by modulating the yield of potentially dangerous chlorophyll-excited states in vivo and preventing the production of singlet oxygen.


Assuntos
Arabidopsis/metabolismo , Clorofila/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Xantofilas/farmacologia , Arabidopsis/genética , Clorofila/genética , Complexos de Proteínas Captadores de Luz/genética , Fotossíntese/genética , Complexo de Proteína do Fotossistema II/genética , Oxigênio Singlete/metabolismo , Zeaxantinas
10.
Photosynth Res ; 117(1-3): 257-65, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23904192

RESUMO

The major light-harvesting complex of Amphidinium (A.) carterae, chlorophyll-a-chlorophyll-c 2-peridinin-protein complex (acpPC), was studied using ultrafast pump-probe spectroscopy at low temperature (60 K). An efficient peridinin-chlorophyll-a energy transfer was observed. The stimulated emission signal monitored in the near-infrared spectral region was stronger when redder part of peridinin pool was excited, indicating that these peridinins have the S1/ICT (intramolecular charge-transfer) state with significant charge-transfer character. This may lead to enhanced energy transfer efficiency from "red" peridinins to chlorophyll-a. Contrary to the water-soluble antenna of A. carterae, peridinin-chlorophyll-a protein, the energy transfer rates in acpPC were slower under low-temperature conditions. This fact underscores the influence of the protein environment on the excited-state dynamics of pigments and/or the specificity of organization of the two pigment-protein complexes.


Assuntos
Temperatura Baixa , Dinoflagellida/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho , Carotenoides/metabolismo , Clorofila/metabolismo , Clorofila A , Elétrons , Transferência de Energia , Cinética , Fatores de Tempo
11.
Chempluschem ; 88(11): e202300404, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37747302

RESUMO

This work examines the influence of applied external voltage in bulk electrolysis on the excited-state properties of 8'-apo-ß-carotenal in acetonitrile by steady-state and ultrafast time-resolved absorption spectroscopy. The data collected under bulk electrolysis were compared with those taken without applied voltage. The steady-state measurements showed that although intensity of the S0 -S2 absorption band varies with the applied voltage, the spectral position remain nearly constant. Comparison of transient absorption spectra shows that the magnitude of the ICT-like band decreases during the experiment under applied voltage condition, and is associated with a prolongation of the S1 /ICT-like lifetime from 8 ps to 13 ps. Furthermore, switching off the applied voltage resulted in returning to no-voltage data within about 30 min. Our results show that the amplitude of the signal associated with the ICT state can be tuned by applying an external voltage.

12.
Biochim Biophys Acta ; 1807(5): 518-28, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21419098

RESUMO

A peripheral light-harvesting complex from the aerobic purple bacterium Roseobacter (R.) denitrificans was purified and its photophysical properties characterized. The complex contains two types of pigments, bacteriochlorophyll (BChl) a and the carotenoid (Car) spheroidenone and possesses unique spectroscopic properties. It appears to lack the B850 bacteriochlorophyll a Q(y) band that is typical for similar light-harvesting complex 2 antennas. Circular dichroism and low temperature steady-state absorption spectroscopy revealed that the B850 band is present but is shifted significantly to shorter wavelengths and overlaps with the B800 band at room temperature. Such a spectral signature classifies this protein as a member of the light-harvesting complex 4 class of peripheral light-harvesting complexes, along with the previously known light-harvesting complex 4 from Rhodopseudomonas palustris. The influence of the spectral change on the light-harvesting ability was studied using steady-state absorption, fluorescence, circular dichroism, femtosecond and microsecond time-resolved absorption and time-resolved fluorescence spectroscopies. The results were compared to the properties of the similar (in pigment composition) light-harvesting complex 2 from aerobically grown Rhodobacter sphaeroides and are understood within the context of shared similarities and differences and the putative influence of the pigments on the protein structure and its properties.


Assuntos
Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Roseobacter/metabolismo , Sequência de Aminoácidos , Bacterioclorofilas/química , Carotenoides/química , Dicroísmo Circular , Dados de Sequência Molecular , Roseobacter/química , Espectrometria de Fluorescência
13.
Phys Chem Chem Phys ; 14(18): 6312-9, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22331127

RESUMO

In carotenoids internal conversion between the allowed (S(2)) and forbidden (S(1)) excited states occurs on a sub-picosecond timescale; the involvement of an intermediate excited state(s) (S(x)) mediating the process is controversial. Here we use high time resolution (sub-20 fs) broadband (1.2-2.5 eV) pump-probe spectroscopy to study the solvent dependence of excited state dynamics of spheroidene, a naturally-occurring carotenoid with ten conjugated double bonds. In the high polarizability solvent, CS(2), we find no evidence of an intermediate state, and the traditional three-level (S(0), S(1), S(2)) model fully accounts for the S(2)→ S(1) process. On the other hand, in the low polarizability solvent, cyclohexane, we find that rapid (~30 fs) relaxation to an intermediate state, S(x), lying between S(1) and S(2) is required to account for the data. We interpret these results as due to a shift of the S(2) energy, which positions the state above or below the energy of S(x) in response to changes in solvent polarizability.


Assuntos
Carotenoides/química , Solventes/química , Dissulfeto de Carbono/química , Cicloexanos/química , Rhodobacter sphaeroides/química , Análise Espectral , Temperatura , Fatores de Tempo
14.
J Phys Chem A ; 116(50): 12330-8, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23176366

RESUMO

Excited-state properties of monomeric and aggregated carbonyl carotenoid 8'-apo-ß-carotenal were studied by means of femtosecond transient absorption spectroscopy. For monomers, the polarity-dependent behavior characteristic of carotenoids with conjugated carbonyl group was observed. In n-hexane the S(1) lifetime is 25 ps, but it is shortened to 8 ps in methanol. This shortening is accompanied by the appearance of new spectral bands in transient absorption spectrum. On the basis of analysis of the transient absorption spectra of monomeric 8'-apo-ß-carotenal in n-hexane and methanol, we propose that the polarity-induced spectral bands are due to the S(1)(A(g)(-))-S(3)(A(g)(+)) transition, which is enhanced upon breaking the symmetry of the molecule. This symmetry breaking is caused by the conjugated carbonyl group; it is much stronger in polar solvents where the S(1) state gains significant charge-transfer character. Upon addition of water to methanol solution of 8'-apo-ß-carotenal we observed formation of aggregates characterized by either blue-shifted (H-aggregate) or red-shifted (J-aggregate) absorption spectrum. Both aggregate types exhibit excited-state dynamics significantly different from those of monomeric 8'-apo-ß-carotenal. The lifetime of the relaxed S(1) state is 20 and 40 ps for the H- and J-aggregates, respectively. In contrast to monomers, aggregation promotes formation of triplet state, most likely by homofission occurring between tightly packed molecules within the aggregate.


Assuntos
Carotenoides/química , Absorção , Análise Espectral
15.
Photosynth Res ; 110(1): 49-60, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21984346

RESUMO

The light-harvesting complex 2 from the thermophilic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption and fluorescence, sub-nanosecond-time-resolved fluorescence and femtosecond time-resolved transient absorption spectroscopy. The measurements were performed at room temperature and at 10 K. The combination of both ultrafast and steady-state optical spectroscopy methods at ambient and cryogenic temperatures allowed the detailed study of carotenoid (Car)-to-bacteriochlorophyll (BChl) as well BChl-to-BChl excitation energy transfer in the complex. The studies show that the dominant Cars rhodopin (N=11) and spirilloxanthin (N=13) do not play a significant role as supportive energy donors for BChl a. This is related with their photophysical properties regulated by long π-electron conjugation. On the other hand, such properties favor some of the Cars, particularly spirilloxanthin (N=13) to play the role of the direct quencher of the excited singlet state of BChl.


Assuntos
Bacterioclorofilas/fisiologia , Carotenoides/química , Chromatiaceae/química , Complexos de Proteínas Captadores de Luz/química , Espectrometria de Fluorescência/métodos , Bacterioclorofilas/química , Carotenoides/fisiologia , Chromatiaceae/fisiologia , Temperatura Baixa , Transferência de Energia , Cinética , Luz , Complexos de Proteínas Captadores de Luz/isolamento & purificação , Fotossíntese/fisiologia , Temperatura , Fatores de Tempo , Xantofilas/química , Xantofilas/fisiologia
16.
Inorg Chem ; 50(16): 7511-23, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21776954

RESUMO

Metallaborane compounds containing two adjacent metal atoms, [(PMe(2)Ph)(4)MM'B(10)H(10)] (where MM' = Pt(2), 1; PtPd, 7; Pd(2), 8), have been synthesized, and their propensity to sequester O(2), CO, and SO(2) and to then release them under pulsed and continuous irradiation are described. Only [(PMe(2)Ph)(4)Pt(2)B(10)H(10)], 1, undergoes reversible binding of O(2) to form [(PMe(2)Ph)(4)(O(2))Pt(2)B(10)H(10)] 3, but solutions of 1, 7, and 8 all quantitatively take up CO across their metal-metal vectors to form [(PMe(2)Ph)(4)(CO)Pt(2)B(10)H(10)] 4, [(PMe(2)Ph)(4)(CO)PtPdB(10)H(10)] 10, and [(PMe(2)Ph)(4)(CO)Pd(2)B(10)H(10)] 11, respectively. Crystallographically determined interatomic M-M distances and infrared CO stretching frequencies show that the CO molecule is bound progressively more weakly in the sequence {PtPt} > {PtPd} > {PdPd}. Similarly, SO(2) forms [(PMe(2)Ph)(4)(SO(2))Pt(2)B(10)H(10)] 5, [(PMe(2)Ph)(4)(SO(2))PtPdB(10)H(10)] 12, and [(PMe(2)Ph)(4)(SO(2))Pd(2)B(10)H(10)] 13 with progressively weaker binding of the SO(2) molecule. The uptake and release of gas molecules are accompanied by changes in their absorption spectra. Nanosecond transient absorption spectroscopy clearly shows that the O(2) and CO molecules are liberated from the bimetallic binding site with high quantum yields of about 0.6. For 3, in addition to dioxygen release in the triplet ground state, singlet oxygen O(2)((1)Δ(g)) was also detected with a quantum yield <0.01. In most cases, the release and rebinding of the gas molecules can be cycled with little photodegradation of the compounds. Femtosecond transient absorption spectroscopy further reveals that the photorelease of the O(2) and CO molecules, from 3 and 4 respectively, is an ultrafast process taking place on a time scale of tens of picoseconds. For SO(2), the release is even faster (<1 ps), but only in the case of mixed metal PtPd adducts, most probably because of the metal-metal bonding asymmetry in the mixed metal clusters; for the corresponding symmetric Pt(2) and Pd(2) adducts, 5 and 13, the release of SO(2) is significantly slower (>1 ns). All these compounds may have potential to serve as light-triggered local and instantaneous sources of the studied gases.


Assuntos
Boranos/síntese química , Monóxido de Carbono/química , Oxigênio/química , Paládio/química , Fotoquímica , Platina/química , Teoria Quântica , Dióxido de Enxofre/química , Boranos/química , Cristalografia por Raios X , Difração de Raios X
17.
Phys Chem Chem Phys ; 13(15): 6947-54, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21399801

RESUMO

Transient absorption spectroscopy, cyclic voltammetry, and DFT calculations were used to describe charge transfer processes in a series of 5,10,15,20-tetrakis(N-methylpyridinium-n-yl) porphyrins (TMPyPn, n = 4,3,2) and TMPyPn/p-sulfonatocalix[m]arene (clxm, m = 4,6,8) complexes. Excitation of TMPyPn is accompanied by an increasing electron density at the methylpyridinium substituents in the order TMPyP2 < TMPyP3 < TMPyP4. The quenching of the excited singlet states of the complexes increases with the number of ionized phenolic groups of clxm and can be correlated with the partial transfer of the electron density from O(-) to the peripheral methylpyridinium substituents rather than to the porphyrin ring.


Assuntos
Calixarenos/química , Porfirinas/química , Teoria Quântica , Absorção , Eletroquímica , Transporte de Elétrons , Hidroxibenzoatos/química , Cinética , Modelos Moleculares , Conformação Molecular , Soluções
18.
Phys Chem Chem Phys ; 12(13): 3112-20, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20237698

RESUMO

Excited-state properties of aryl carotenoids, important components of light harvesting antennae of green sulfur bacteria, have been studied by femtosecond transient absorption spectroscopy. To explore effects of the conjugated aryl group, we have studied a series of aryl carotenoids with conjugated phi-ring, chlorobactene, beta-isorenieratene and isorenieratene, and compared them with their non-aryl counterparts gamma-carotene and beta-carotene, which contain beta-ring. Changing beta-ring to phi-ring did not reveal any changes in absorption spectra, indicating negligible effect of the phi-ring on the effective conjugation length. This observation is further supported by the carotenoid S(1) lifetimes. In n-hexane, the S(1) lifetime of chlorobactene having one phi-ring is 6.7 ps, while the S(1) lifetime of the beta-ring analog, gamma-carotene is 5.4 ps. The same effect is observed for the series beta-carotene (two beta-rings), beta-isorenieratene (one beta- and one phi-ring) and isorenieratene (two phi-rings) whose S(1) lifetimes in n-hexane are 8.2, 10.3 and 12.7 ps, respectively. The systematically longer lifetimes of aryl carotenoids show that the additional conjugated C=C bonds at the phi-ring do not contribute to the conjugation length. The S(1) lifetimes of aryl carotenoids were slightly shortened in benzene, indicating pi-pi stacking interaction between the phi-ring and benzene.


Assuntos
Carotenoides/química , Chlorobi/química , Teoria Quântica , Espectrofotometria , Fatores de Tempo , beta Caroteno/química
19.
J Phys Chem B ; 124(24): 4896-4905, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32437153

RESUMO

Recently a new family of carotenoproteins, homologues of the N-terminal domain of the orange carotenoid protein (NTD-OCP), have been identified in cyanobacteria. These homologues are called helical carotenoid proteins (HCPs) as they are all predicted to maintain the all-helical structure of the NTD-OCP and to bind carotenoids. Here, HCP2 and HCP3 isolated from the cyanobacterium Tolypothrix PCC 7601 were studied by ultrafast transient absorption spectroscopy to explore the excited-state dynamics of the bound carotenoid, canthaxanthin. The lowest excited state, S1, of canthaxanthin in both HCPs yields a lifetime of 3.5 ps; it is thus shorter than for canthaxanthin in solution (4.5 ps). This is because of the longer effective conjugation of canthaxanthin in HCPs, as one of the terminal rings is in an s-trans configuration. Use of two different excitation wavelengths, 470 and 570 nm, revealed excitation wavelength dependent spectroscopic response. Additional excited-state absorption bands are observed after excitation at 470 nm for both HCPs, proving the presence of more than one ground state conformer.


Assuntos
Cantaxantina , Carotenoides , Cianobactérias , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Proteínas de Transporte , Cianobactérias/metabolismo
20.
Phys Chem Chem Phys ; 11(39): 8795-803, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20449025

RESUMO

Effects of introducing a carbonyl group and its position in the conjugated system of carotenoids were studied by means of femtosecond time-resolved spectroscopy. We have compared four naturally occurring carotenoids with comparable structures, beta-carotene, echinenone, canthaxanthin and rhodoxanthin, which differ in the number and position of conjugated carbonyl group(s). The S(1) lifetime is systematically shorter upon increasing the number of the conjugated C=O groups, yielding 9.3 ps (for beta-carotene, no C=O group), 6.2 ps (echinenone, one C=O group), 4.5 ps (canthaxanthin, two C=O groups), and 1.1 ps (rhodoxanthin, two C=O groups in s-trans configuration). Except for slight polarity-induced broadening of absorption and transient absorption spectra, no other polarity effects, such as shortening of the S(1) lifetimes or transient features attributable to intramolecular charge transfer (ICT) state bands, were observed. The absence of these polarity-induced features is explained as due to the long conjugated chain (no lifetime shortening), and the symmetrical position of the carbonyl groups (no ICT bands). On the other hand, all carotenoids exhibit the characteristic spectral band attributed to the S* state, and for the two longest carotenoids, canthaxanthin and rhodoxanthin, decay of the S* state is markedly longer than that of the S(1) state. Moreover, it is shown that the S* state is preferentially populated for a specific subset of ground state conformations, underlining the importance of carotenoid conformation in S* state formation.


Assuntos
Carotenoides/química , Teoria Quântica , Estrutura Molecular , Espectrofotometria Infravermelho , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA