Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 13(42): 29695-29705, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37822664

RESUMO

Layered double hydroxides (LDHs) have been extensively investigated as promising peroxymonosulfate (PMS) activators for the degradation of organic pollutants. However, bulk LDHs synthesized using conventional methods possess a closely stacked layered structure, which seriously blocks active sites and yields low intrinsic activity. In this study, we exfoliated bulk CoAl-LDHs to fabricate CoAl-LDH nanosheets by alkali-etching and Ostwald ripening via a simple hydrothermal process in a KOH solution. The exfoliated LDHs possessed the typical nanosheet structure with more exposed active sites for PMS activation, and hence, boosted the degradation of the pollutants. CoAl-1 exhibited an outstanding catalytic performance as the PMS activator for rhodamine B (RhB) degradation with the apparent rate constant of 0.1687 min-1, which was about 3.63 and 5.02 times higher than that of commercial nano-Co3O4 and bulk CoAl-LDH, respectively. The maximum RhB degradation of 93.1% was achieved at the optimal reaction conditions: catalyst dose 0.1 g L-1, PMS concentration 0.3 mM, pH 7, and temperature 298 K. Further analysis of RhB degradation mechanism illustrated that singlet oxygen (1O2) dominated RhB degradation in the CoAl-1/PMS system, while ˙OH, ˙O2-, and ˙SO4- may mainly serve as the intermediates for the generation of 1O2 and were indirectly involved in the degradation. This study provides a promising strategy for developing two-dimensional LDH nanosheets for wastewater remediation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA