Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Derm Venereol ; 99(9): 809-812, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045236

RESUMO

Tumor cells in cutaneous T-cell lymphoma express limited numbers of chemokine receptors. We investigated the expression patterns of CXCR3, CCR3, CCR4 and CCR10 in mycosis fungoides, Sézary syndrome, lym-phomatoid papulosis and anaplastic large cell lymphoma in 121 skin biopsy samples. CXCR3 was expressed in 86% of mycosis fungoides cases but in no anaplastic large cell lymphoma cases. CCR3 was expressed in 73% of cases of CD30+ lymphoproliferative disorders such as lymphomatoid papulosis and anaplastic large cell lymphoma. Mycosis fungoides/Sézary syndrome patients with high CCR3 or CCR4 expression had a poorer survival prognosis than mycosis fungoides/Sézary syndrome patients whose tumor cells did not express these receptors. CCR10 was expressed in 50% of mycosis fungoides/Sézary syndrome cases and in 13% of cases with CD30+ lym-phoproliferative disorders. These results suggest that differential patterns of CXCR3, CCR3, CCR4 and CCR10 expression are useful for the diagnosis of cutaneous T-cell lymphoma. Moreover, expression of CCR3 or CCR4 suggests a poor prognosis in mycosis fungoides/Sézary syndrome.


Assuntos
Biomarcadores Tumorais/análise , Micose Fungoide/imunologia , Receptores CCR3/análise , Receptores CCR4/análise , Síndrome de Sézary/imunologia , Neoplasias Cutâneas/imunologia , Humanos , Micose Fungoide/mortalidade , Micose Fungoide/patologia , Prognóstico , Receptores CCR10/análise , Receptores CXCR3/análise , Síndrome de Sézary/mortalidade , Síndrome de Sézary/patologia , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Regulação para Cima
2.
ACS Omega ; 9(7): 7597-7608, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405446

RESUMO

Globally, most oil fields use excessive water flooding to recover oil. By injection of water between wells, channels are created, which result in lower oil recovery. Water-plugging deep-profile control must be used to control the excessive water production from an oil reservoir. This laboratory study used sulfonated polyacrylamides with a molecular weight of 10.3-13.0 × 106 Da (FPAM) and polyethylenimine (PEI-600) to formulate a weak gel system to control excessive water production from deep formations. Using different FPAM and PEI-600 concentrations, the Sydansk bottle test approach was applied to evaluate the gelation time, strength, and stability of the weak gel. The weak gel concentration of 0.5 wt % FPAM and 0.4 wt % PEI-600 was confirmed for deep-profile control by this approach. The temperature and salt resistance of the selected weak gel system were evaluated using the same bottle test methodology. The gelation time depends on temperature: 5-7 days at <100 °C to 0.5 days >100 °C. Salinity >20,000 mg/L significantly affected the weak gel system's strength. By performing a viscometer test, the viscosity of the weak gel system at different times was evaluated, confirming the gelation time of the selected weak gel. Next, a microfluidic chip flooding test analyzed weak gel performance and plugging ability in porous media. This micromodel provided a visual analysis of the weak gel plug. Finally, a low- to medium-permeability sandstone core-flooding was conducted to determine the plugging rate of weak gel at the core scale, followed by an evaluation of the injection pressure, blocking effect, and oil recovery. According to the study, the selected weak gel has an extended gelation time with a significantly low viscosity, which affects its injectivity and can move from injection wells into deep formations. In the core-flooding test, the weak gel's blocking rate after 7 days of gelation time exceeded 90%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA