Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Part Fibre Toxicol ; 20(1): 6, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797786

RESUMO

BACKGROUND: A recent epidemiological study showed that air pollution is closely involved in the prognosis of ischemic stroke. We and others have reported that microglial activation in ischemic stroke plays an important role in neuronal damage. In this study, we investigated the effects of urban aerosol exposure on neuroinflammation and the prognosis of ischemic stroke using a mouse photothrombotic model. RESULTS: When mice were intranasally exposed to CRM28, urban aerosols collected in Beijing, China, for 7 days, microglial activation was observed in the olfactory bulb and cerebral cortex. Mice exposed to CRM28 showed increased microglial activity and exacerbation of movement disorder after ischemic stroke induction. Administration of core particles stripped of attached chemicals from CRM28 by washing showed less microglial activation and suppression of movement disorder compared with CRM28-treated groups. CRM28 exposure did not affect the prognosis of ischemic stroke in null mice for aryl hydrocarbon receptor, a polycyclic aromatic hydrocarbon (PAH) receptor. Exposure to PM2.5 collected at Yokohama, Japan also exacerbated movement disorder after ischemic stroke. CONCLUSION: Particle matter in the air is involved in neuroinflammation and aggravation of the prognosis of ischemic stroke; furthermore, PAHs in the particle matter could be responsible for the prognosis exacerbation.


Assuntos
Poluentes Atmosféricos , AVC Isquêmico , Transtornos dos Movimentos , Hidrocarbonetos Policíclicos Aromáticos , Animais , Camundongos , Material Particulado/toxicidade , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Doenças Neuroinflamatórias , China , Camundongos Knockout , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Monitoramento Ambiental
2.
Histochem Cell Biol ; 156(2): 147-163, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33963922

RESUMO

The aryl hydrocarbon receptor (AhR) acts as a receptor that responds to ligands, including dioxin. The AhR-ligand complex translocates from the cytoplasm into the nucleus to induce gene expression. Because dioxin exposure impairs cognitive and neurobehavioral functions, AhR-expressing neurons need to be identified for elucidation of the dioxin neurotoxicity mechanism. Immunohistochemistry was performed to detect AhR-expressing neurons in the mouse brain and confirm the specificity of the anti-AhR antibody using Ahr-/- mice. Intracellular distribution of AhR and expression level of AhR-target genes, Cyp1a1, Cyp1b1, and Ahr repressor (Ahrr), were analyzed by immunohistochemistry and quantitative RT-PCR, respectively, using mice exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The mouse brains were shown to harbor AhR in neurons of the locus coeruleus (LC) and island of Calleja major (ICjM) during developmental period in Ahr+/+ mice but not in Ahr-/- mice. A significant increase in nuclear AhR of ICjM neurons but not LC neurons was found in 14-day-old mice compared to 5- and 7-day-old mice. AhR was significantly translocated into the nucleus in LC and ICjM neurons of TCDD-exposed adult mice. Additionally, the expression levels of Cyp1a1, Cyp1b1, and Ahrr genes in the brain, a surrogate of TCDD in the tissue, were significantly increased by dioxin exposure, suggesting that dioxin-activated AhR induces gene expression in LC and ICjM neurons. This histochemical study shows the ligand-induced nuclear translocation of AhR at the single-neuron level in vivo. Thus, the neurotoxicological significance of the dioxin-activated AhR in the LC and ICjM warrants further studies.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Encéfalo/metabolismo , Dioxinas/metabolismo , Locus Cerúleo/metabolismo , Neurônios/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/análise , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Hidrocarboneto Arílico/análise , Receptores de Hidrocarboneto Arílico/metabolismo
3.
Proc Natl Acad Sci U S A ; 113(42): 11883-11888, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27688768

RESUMO

The aryl hydrocarbon receptor (AhR) is now recognized as an important physiological regulator in the immune and reproductive systems, and in the development of the liver and vascular system. AhR regulates cell cycle, cell proliferation, and differentiation through interacting with other signaling pathways, like estrogen receptor α (ERα), androgen receptor (AR), and Notch signaling. In the present study, we investigated Notch and estrogen signaling in AhR-/- mice. We found low fertility with degenerative changes in the testes, germ cell apoptosis, and a reduced number of early spermatids. There was no change in aromatase, AR, ERα, or ERß expression in the testis and no detectable change in serum estrogen levels. However, expression of Notch receptors (Notch1 and Notch3) and their target Hairy and Enhancer of Split homolog 1 (HES1) was reduced. In addition, the testosterone level was slightly reduced in the serum. In the mammary fat pad, AhR appeared to regulate estrogen signaling because, in AhR-/- males, there was significant growth of the mammary ducts with high expression of ERα in the ductal epithelium. The enhanced mammary ductal growth appears to be related to overexpression of ERα accompanied by a high proliferation index, whereas the reduced fertility appears to be related defects in Notch signaling that leads to reduced expression of HES1 and, consequently, early maturation of spermatocytes and a depletion of primary spermatids. Previous reports have indicated that AhR pathway is associated with infertility in men. Our results provide a mechanistic explanation for this defect.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Receptor alfa de Estrogênio/metabolismo , Receptores de Hidrocarboneto Arílico/deficiência , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Apoptose/genética , Aromatase/metabolismo , Biomarcadores , Proliferação de Células , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Fertilidade/genética , Deleção de Genes , Expressão Gênica , Células Germinativas/metabolismo , Imuno-Histoquímica , Masculino , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Camundongos , Camundongos Knockout , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Espermatócitos/metabolismo , Testículo/metabolismo
4.
Bioorg Med Chem ; 25(16): 4253-4258, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28662965

RESUMO

The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcriptional factor belonging to the basic helix-loop-helix-Per-Ahr/Arnt-Sim family. In this study, we evaluated the AhR agonistic activities of 12 xanthones isolated from the roots of M. cochinchinensis var. gerontogea using HepG2 cells transfected with pX4TK-Luc reporter plasmids. Gerontoxanthone B (GXB) showed the most potent activity at a concentration of 10µM, and the activity was inhibited by AhR antagonists such as GNF-351. GXB also increased cytochrome P450 1A1 mRNA and protein levels in HepG2 cells. Similar to the AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin, however, GXB suppressed the IL-1ß-induced mRNA level of SAA1, an acute-phase response gene that is up-regulated AhR-dependently but XRE-independently. Thus, GXB shows XRE-dependent transcriptional activity and XRE-independent activity involving AhR.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Maclura/química , Receptores de Hidrocarboneto Arílico/agonistas , Xantonas/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Xantonas/química , Xantonas/isolamento & purificação
6.
Int Immunol ; 27(8): 405-15, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25862525

RESUMO

Aryl hydrocarbon receptor (Ahr), a transcription factor, plays a critical role in autoimmune inflammation of the intestine. In addition, microRNAs (miRNAs), small non-coding oligonucleotides, mediate pathogenesis of inflammatory bowel diseases (IBD). However, the precise mechanism and interactions of these molecules in IBD pathogenesis have not yet been investigated. We analyzed the role of Ahr and Ahr-regulated miRNAs in colonic inflammation. Our results show that deficiency of Ahr in intestinal epithelial cells in mice exacerbated inflammation in dextran sodium sulfate-induced colitis. Deletion of Ahr in T cells attenuated colitis, which was manifested by suppressed Th17 cell infiltration into the lamina propria. Candidate miRNA analysis showed that induction of colitis elevated expression of the miR-212/132 cluster in the colon of wild-type mice, whereas in Ahr (-/-) mice, expression was clearly lower. Furthermore, miR-212/132(-/-) mice were highly resistant to colitis and had reduced levels of Th17 cells and elevated levels of IL-10-producing CD4(+) cells. In vitro analyses revealed that induction of type 1 regulatory T (Tr1) cells was significantly elevated in miR-212/132(-/-) T cells with increased c-Maf expression. Our findings emphasize the vital role of Ahr in intestinal homeostasis and suggest that inhibition of miR-212/132 represents a viable therapeutic strategy for treating colitis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Colite/genética , Interleucina-10/genética , MicroRNAs/genética , Receptores de Hidrocarboneto Arílico/genética , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Proliferação de Células , Colite/induzido quimicamente , Colite/imunologia , Colite/patologia , Sulfato de Dextrana , Feminino , Regulação da Expressão Gênica , Homeostase/imunologia , Interleucina-10/imunologia , Intestinos/imunologia , Intestinos/patologia , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/imunologia , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas c-maf/genética , Proteínas Proto-Oncogênicas c-maf/imunologia , Receptores de Hidrocarboneto Arílico/deficiência , Receptores de Hidrocarboneto Arílico/imunologia , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Células Th17/imunologia , Células Th17/patologia
7.
Int Immunol ; 26(4): 209-20, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24343818

RESUMO

Aryl hydrocarbon receptor (AhR) is crucial for various immune responses. The relationship between AhR and infection with the intracellular bacteria Listeria monocytogenes (LM) is poorly understood. Here, we show that in response to LM infection, AhR is required for bacterial clearance by promoting macrophage survival and reactive oxygen species (ROS) production. AhR-deficient mice were more susceptible to listeriosis, and AhR deficiency enhances bacterial growth in vivo and in vitro. On the other hand, pro-inflammatory cytokines were increased in AhR-deficient macrophages infected with LM despite enhanced susceptibility to LM infection in AhR-deficient mice. Subsequent studies demonstrate that AhR protects against macrophage cell death induced by LM infection through the induction of the antiapoptotic factor, the apoptosis inhibitor of macrophages, which promotes macrophage survival in the setting of LM infection. Furthermore, AhR promotes ROS production for bacterial clearance. Our results demonstrate that AhR is essential to the resistance against LM infection as it promotes macrophage survival and ROS production. This suggests that the activation of AhR by its ligands may be an effective strategy against listeriosis.


Assuntos
Listeriose/imunologia , Macrófagos Peritoneais/imunologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Apoptose/genética , Carga Bacteriana , Sobrevivência Celular/genética , Células Cultivadas , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos Peritoneais/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/imunologia
8.
Int Immunol ; 26(3): 129-37, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24150244

RESUMO

The aryl hydrocarbon receptor (AhR), a ligand-activated nuclear transcription factor, is known to mediate the toxic and carcinogenic effects of various environmental pollutants, while AhR has been shown to protect animals from various types of tissue injury. ConA-induced hepatitis is known as a mouse model of acute liver injury. Here, we found a protective role of AhR in ConA-induced hepatitis. AhR is induced in the liver during ConA-induced hepatitis, and Ahr (-/-) mice were highly sensitive to this model. Bone marrow chimera experiments indicate that Ahr (-/-) hematopoietic cells are responsible for hypersensitivity to ConA-induced hepatitis. We found that IFN-γ from invariant NKT cells was up-regulated and IL-22 from innate lymphoid cells (ILCs) was abolished in Ahr (-/-) mice. In addition, IL-22 production was still observed in Rag2 (-/-) mice but it was severely reduced in Ahr (-/-) Rag2 (-/-) mice. ConA-induced IL-22 production was also dependent on retinoic acid-related orphan receptor γt. These results show that AhR has crucial protective roles in ConA-induced liver injury via promoting IL-22 production from ILCs and suppressing IFN-γ expression from NKT cells.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Células T Matadoras Naturais/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Concanavalina A/administração & dosagem , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Progressão da Doença , Regulação da Expressão Gênica/genética , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Receptores de Hidrocarboneto Arílico/genética , Quimeras de Transplante , Interleucina 22
9.
Proc Natl Acad Sci U S A ; 109(4): 1122-6, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22232670

RESUMO

The aryl hydrocarbon receptor (AhR) knockout mice raised in the laboratory of Fujii-Kuriyama have been under investigation for several years because of the presence in their urinary bladder of large, yellowish stones. The stones are composed of uric acid and become apparent in the bladders as tiny stones when mice are 10 wk of age. By the time the mice are 6 mo of age, there are usually two or three stones with diameters of 3-4 mm. The urate concentration in the serum was normal but in the urine the concentration was 40-50 mg/dL, which is 10 times higher than that in the WT littermates. There were no apparent histological pathologies in the kidney or joints and the levels of enzymes involved in elimination of purines were normal. The source of the uric acid was therefore judged to be from degradation of nucleic acids due to a high turnover of cells in the bladder itself. The bladder was fibrotic and the luminal side of the bladder epithelium was filled with eosinophilic granules. There was loss of E-cadherin between some epithelial cells, with an enlarged submucosal area filled with immune cells and sometimes invading epithelial cells. We hypothesize that in the absence of AhR there is loss of detoxifying enzymes, which leads to accumulation of unconjugated cytotoxins and carcinogens in the bladder. The presence of bladder toxins may have led to the increased apoptosis and inflammation as well as invasion of epithelial cells in the bladders of older mice.


Assuntos
Receptores de Hidrocarboneto Arílico/genética , Ácido Úrico/urina , Cálculos da Bexiga Urinária/química , Cálculos da Bexiga Urinária/patologia , Bexiga Urinária/citologia , Animais , Apoptose/fisiologia , Caderinas/deficiência , Fibrose , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Bexiga Urinária/patologia
10.
Biochem Biophys Res Commun ; 450(1): 416-22, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24938130

RESUMO

Bone mass is regulated by various molecules including endogenous factors as well as exogenous factors, such as nutrients and pollutants. Aryl hydrocarbon receptor (AhR) is known as a dioxin receptor and is responsible for various pathological and physiological processes. However, the role of AhR in bone homeostasis remains elusive because the cell type specific direct function of AhR has never been explored in vivo. Here, we show the cell type specific function of AhR in vivo in bone homeostasis. Systemic AhR knockout (AhRKO) mice exhibit increased bone mass with decreased resorption and decreased formation. Meanwhile, osteoclast specific AhRKO (AhR(ΔOc/ΔOc)) mice have increased bone mass with reduced bone resorption, although the mice lacking AhR in osteoblasts have a normal bone phenotype. Even under pathological conditions, AhR(ΔOc/ΔOc) mice are resistant to sex hormone deficiency-induced bone loss resulting from increased bone resorption. Furthermore, 3-methylcholanthrene, an AhR agonist, induces low bone mass with increased bone resorption in control mice, but not in AhR(ΔOc/ΔOc) mice. Taken together, cell type specific in vivo evidence for AhR functions indicates that osteoclastic AhR plays a significant role in maintenance of bone homeostasis, suggesting that inhibition of AhR in osteoclasts can be beneficial in the treatment of osteoporosis.


Assuntos
Reabsorção Óssea/metabolismo , Fêmur/metabolismo , Fêmur/patologia , Osteoclastos/metabolismo , Osteoclastos/patologia , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Densidade Óssea , Reabsorção Óssea/diagnóstico por imagem , Reabsorção Óssea/patologia , Feminino , Fêmur/diagnóstico por imagem , Masculino , Metabolismo , Camundongos , Camundongos Knockout , Tamanho do Órgão , Ovariectomia , Radiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA