Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34876521

RESUMO

In fast-moving cells such as amoeba and immune cells, dendritic actin filaments are spatiotemporally regulated to shape large-scale plasma membrane protrusions. Despite their importance in migration, as well as in particle and liquid ingestion, how their dynamics are affected by micrometer-scale features of the contact surface is still poorly understood. Here, through quantitative image analysis of Dictyostelium on microfabricated surfaces, we show that there is a distinct mode of topographical guidance directed by the macropinocytic membrane cup. Unlike other topographical guidance known to date that depends on nanometer-scale curvature sensing protein or stress fibers, the macropinocytic membrane cup is driven by the Ras/PI3K/F-actin signaling patch and its dependency on the micrometer-scale topographical features, namely PI3K/F-actin-independent accumulation of Ras-GTP at the convex curved surface, PI3K-dependent patch propagation along the convex edge, and its actomyosin-dependent constriction at the concave edge. Mathematical model simulations demonstrate that the topographically dependent initiation, in combination with the mutually defining patch patterning and the membrane deformation, gives rise to the topographical guidance. Our results suggest that the macropinocytic cup is a self-enclosing structure that can support liquid ingestion by default; however, in the presence of structured surfaces, it is directed to faithfully trace bent and bifurcating ridges for particle ingestion and cell guidance.


Assuntos
Simulação por Computador , Dictyostelium/fisiologia , Modelos Biológicos , Pinocitose/fisiologia , Membrana Celular/fisiologia , Quimiotaxia , Movimento , Fosfatidilinositol 3-Quinases , Transdução de Sinais
2.
Proc Natl Acad Sci U S A ; 116(10): 4291-4296, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30782791

RESUMO

Despite their central role in multicellular organization, navigation rules that dictate cell rearrangement remain largely undefined. Contact between neighboring cells and diffusive attractant molecules are two of the major determinants of tissue-level patterning; however, in most cases, molecular and developmental complexity hinders one from decoding the exact governing rules of individual cell movement. A primordial example of tissue patterning by cell rearrangement is found in the social amoeba Dictyostelium discoideum where the organizing center or the "tip" self-organizes as a result of sorting of differentiating prestalk and prespore cells. By employing microfluidics and microsphere-based manipulation of navigational cues at the single-cell level, here we uncovered a previously overlooked mode of Dictyostelium cell migration that is strictly directed by cell-cell contact. The cell-cell contact signal is mediated by E-set Ig-like domain-containing heterophilic adhesion molecules TgrB1/TgrC1 that act in trans to induce plasma membrane recruitment of the SCAR complex and formation of dendritic actin networks, and the resulting cell protrusion competes with those induced by chemoattractant cAMP. Furthermore, we demonstrate that both prestalk and prespore cells can protrude toward the contact signal as well as to chemotax toward cAMP; however, when given both signals, prestalk cells orient toward the chemoattractant, whereas prespore cells choose the contact signal. These data suggest a model of cell sorting by competing juxtacrine and diffusive cues, each with potential to drive its own mode of collective cell migration.


Assuntos
Movimento Celular/fisiologia , Quimiotaxia/fisiologia , Locomoção/fisiologia , Actinas , Agregação Celular , Diferenciação Celular , AMP Cíclico/metabolismo , Dictyostelium/fisiologia , Difusão , Microfluídica , Proteínas de Protozoários/fisiologia , Transdução de Sinais
3.
bioRxiv ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37873344

RESUMO

Repressive chromatin modifications are thought to compact chromatin to silence transcription. However, it is unclear how chromatin structure changes during silencing and epigenetic memory formation. We measured gene expression and chromatin structure in single cells after recruitment and release of repressors at a reporter gene. Chromatin structure is heterogeneous, with open and compact conformations present in both active and silent states. Recruitment of repressors associated with epigenetic memory produces chromatin compaction across 10-20 kilobases, while reversible silencing does not cause compaction at this scale. Chromatin compaction is inherited, but changes molecularly over time from histone methylation (H3K9me3) to DNA methylation. The level of compaction at the end of silencing quantitatively predicts epigenetic memory weeks later. Similarly, chromatin compaction at the Nanog locus predicts the degree of stem-cell fate commitment. These findings suggest that the chromatin state across tens of kilobases, beyond the gene itself, is important for epigenetic memory formation.

4.
Elife ; 112022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35678392

RESUMO

In mammalian cells genes that are in close proximity can be transcriptionally coupled: silencing or activating one gene can affect its neighbors. Understanding these dynamics is important for natural processes, such as heterochromatin spreading during development and aging, and when designing synthetic gene regulation circuits. Here, we systematically dissect this process in single cells by recruiting and releasing repressive chromatin regulators at dual-gene synthetic reporters, and measuring how fast gene silencing and reactivation spread as a function of intergenic distance and configuration of insulator elements. We find that silencing by KRAB, associated with histone methylation, spreads between two genes within hours, with a time delay that increases with distance. This fast KRAB-mediated spreading is not blocked by the classical cHS4 insulators. Silencing by histone deacetylase HDAC4 of the upstream gene can also facilitate background silencing of the downstream gene by PRC2, but with a days-long delay that does not change with distance. This slower silencing can sometimes be stopped by insulators. Gene reactivation of neighboring genes is also coupled, with strong promoters and insulators determining the order of reactivation. Our data can be described by a model of multi-gene regulation that builds upon previous knowledge of heterochromatin spreading, where both gene silencing and gene reactivation can act at a distance, allowing for coordinated dynamics via chromatin regulator recruitment.


Assuntos
Cromatina , Heterocromatina , Animais , Cromatina/genética , Regulação da Expressão Gênica , Inativação Gênica , Heterocromatina/genética , Elementos Isolantes , Mamíferos/genética
5.
Nat Commun ; 12(1): 537, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483487

RESUMO

Targeting chromatin regulators to specific genomic locations for gene control is emerging as a powerful method in basic research and synthetic biology. However, many chromatin regulators are large, making them difficult to deliver and combine in mammalian cells. Here, we develop a strategy for gene control using small nanobodies that bind and recruit endogenous chromatin regulators to a gene. We show that an antiGFP nanobody can be used to simultaneously visualize GFP-tagged chromatin regulators and control gene expression, and that nanobodies against HP1 and DNMT1 can silence a reporter gene. Moreover, combining nanobodies together or with other regulators, such as DNMT3A or KRAB, can enhance silencing speed and epigenetic memory. Finally, we use the slow silencing speed and high memory of antiDNMT1 to build a signal duration timer and recorder. These results set the basis for using nanobodies against chromatin regulators for controlling gene expression and epigenetic memory.


Assuntos
Cromatina/imunologia , Epigênese Genética/imunologia , Regulação da Expressão Gênica/imunologia , Regiões Promotoras Genéticas/imunologia , Anticorpos de Domínio Único/imunologia , Algoritmos , Animais , Cromatina/genética , Inativação Gênica/imunologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/imunologia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Modelos Genéticos , Regiões Promotoras Genéticas/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Anticorpos de Domínio Único/metabolismo
6.
Mol Cell Biol ; 34(10): 1776-87, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24591654

RESUMO

In mammalian circadian clockwork, the CLOCK-BMAL1 complex binds to DNA enhancers of target genes and drives circadian oscillation of transcription. Here we identified 7,978 CLOCK-binding sites in mouse liver by chromatin immunoprecipitation-sequencing (ChIP-Seq), and a newly developed bioinformatics method, motif centrality analysis of ChIP-Seq (MOCCS), revealed a genome-wide distribution of previously unappreciated noncanonical E-boxes targeted by CLOCK. In vitro promoter assays showed that CACGNG, CACGTT, and CATG(T/C)G are functional CLOCK-binding motifs. Furthermore, we extensively revealed rhythmically expressed genes by poly(A)-tailed RNA-Seq and identified 1,629 CLOCK target genes within 11,926 genes expressed in the liver. Our analysis also revealed rhythmically expressed genes that have no apparent CLOCK-binding site, indicating the importance of indirect transcriptional and posttranscriptional regulations. Indirect transcriptional regulation is represented by rhythmic expression of CLOCK-regulated transcription factors, such as Krüppel-like factors (KLFs). Indirect posttranscriptional regulation involves rhythmic microRNAs that were identified by small-RNA-Seq. Collectively, CLOCK-dependent direct transactivation through multiple E-boxes and indirect regulations polyphonically orchestrate dynamic circadian outputs.


Assuntos
Proteínas CLOCK/fisiologia , Ritmo Circadiano , Elementos E-Box , Interferência de RNA , Animais , Sequência de Bases , Sítios de Ligação , Sequência Consenso , Células HEK293 , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Ligação Proteica , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA