Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Annu Rev Cell Dev Biol ; 28: 215-50, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22905956

RESUMO

The recent rapid accumulation of knowledge on the dynamics and structure of the plasma membrane has prompted major modifications of the textbook fluid-mosaic model. However, because the new data have been obtained in a variety of research contexts using various biological paradigms, the impact of the critical conceptual modifications on biomedical research and development has been limited. In this review, we try to synthesize our current biological, chemical, and physical knowledge about the plasma membrane to provide new fundamental organizing principles of this structure that underlie every molecular mechanism that realizes its functions. Special attention is paid to signal transduction function and the dynamic aspect of the organizing principles. We propose that the cooperative action of the hierarchical three-tiered mesoscale (2-300 nm) domains--actin-membrane-skeleton induced compartments (40-300 nm), raft domains (2-20 nm), and dynamic protein complex domains (3-10 nm)--is critical for membrane function and distinguishes the plasma membrane from a classical Singer-Nicolson-type model.


Assuntos
Microdomínios da Membrana/metabolismo , Modelos Biológicos , Transdução de Sinais , Animais , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Permeabilidade da Membrana Celular , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Humanos , Microdomínios da Membrana/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Estrutura Quaternária de Proteína
2.
Traffic ; 21(1): 106-137, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31760668

RESUMO

Many plasma membrane (PM) functions depend on the cholesterol concentration in the PM in strikingly nonlinear, cooperative ways: fully functional in the presence of physiological cholesterol levels (35~45 mol%), and nonfunctional below 25 mol% cholesterol; namely, still in the presence of high concentrations of cholesterol. This suggests the involvement of cholesterol-based complexes/domains formed cooperatively. In this review, by examining the results obtained by using fluorescent lipid analogs and avoiding the trap of circular logic, often found in the raft literature, we point out the fundamental similarities of liquid-ordered (Lo)-phase domains in giant unilamellar vesicles, Lo-phase-like domains formed at lower temperatures in giant PM vesicles, and detergent-resistant membranes: these domains are formed by cooperative interactions of cholesterol, saturated acyl chains, and unsaturated acyl chains, in the presence of >25 mol% cholesterol. The literature contains evidence, indicating that the domains formed by the same basic cooperative molecular interactions exist and play essential roles in signal transduction in the PM. Therefore, as a working definition, we propose that raft domains in the PM are liquid-like molecular complexes/domains formed by cooperative interactions of cholesterol with saturated acyl chains as well as unsaturated acyl chains, due to saturated acyl chains' weak multiple accommodating interactions with cholesterol and cholesterol's low miscibility with unsaturated acyl chains and TM proteins. Molecules move within raft domains and exchange with those in the bulk PM. We provide a logically established collection of fluorescent lipid probes that preferentially partition into raft and non-raft domains, as defined here, in the PM.


Assuntos
Colesterol , Microdomínios da Membrana , Membrana Celular , Lipídeos , Lipossomas Unilamelares
3.
Nat Chem Biol ; 14(5): 497-506, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29610485

RESUMO

Single-fluorescent-molecule imaging tracking (SMT) is becoming an important tool to study living cells. However, photobleaching and photoblinking (hereafter referred to as photobleaching/photoblinking) of the probe molecules strongly hamper SMT studies of living cells, making it difficult to observe in vivo molecular events and to evaluate their lifetimes (e.g., off rates). The methods used to suppress photobleaching/photoblinking in vitro are difficult to apply to living cells because of their toxicities. Here using 13 organic fluorophores we found that, by combining low concentrations of dissolved oxygen with a reducing-plus-oxidizing system, photobleaching/photoblinking could be strongly suppressed with only minor effects on cells, which enabled SMT for as long as 12,000 frames (~7 min at video rate, as compared to the general 10-s-order durations) with ~22-nm single-molecule localization precisions. SMT of integrins revealed that they underwent temporary (<80-s) immobilizations within the focal adhesion region, which were responsible for the mechanical linkage of the actin cytoskeleton to the extracellular matrix.


Assuntos
Corantes Fluorescentes/química , Integrinas/metabolismo , Microscopia de Fluorescência , Citoesqueleto de Actina/metabolismo , Animais , Células CHO , Adesão Celular , Cricetulus , Matriz Extracelular/metabolismo , Células HeLa , Humanos , Integrina beta1/metabolismo , Integrina beta3/metabolismo , Camundongos , Células NIH 3T3 , Oxirredução , Oxigênio/química , Fotodegradação , Gravação em Vídeo
4.
Nat Chem Biol ; 12(6): 402-10, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27043189

RESUMO

Gangliosides, glycosphingolipids containing one or more sialic acid(s) in the glyco-chain, are involved in various important physiological and pathological processes in the plasma membrane. However, their exact functions are poorly understood, primarily because of the scarcity of suitable fluorescent ganglioside analogs. Here, we developed methods for systematically synthesizing analogs that behave like their native counterparts in regard to partitioning into raft-related membrane domains or preparations. Single-fluorescent-molecule imaging in the live-cell plasma membrane revealed the clear but transient colocalization and codiffusion of fluorescent ganglioside analogs with a fluorescently labeled glycosylphosphatidylinisotol (GPI)-anchored protein, human CD59, with lifetimes of 12 ms for CD59 monomers, 40 ms for CD59's transient homodimer rafts in quiescent cells, and 48 ms for engaged-CD59-cluster rafts, in cholesterol- and GPI-anchoring-dependent manners. The ganglioside molecules were always mobile in quiescent cells. These results show that gangliosides continually and dynamically exchange between raft domains and the bulk domain, indicating that raft domains are dynamic entities.


Assuntos
Antígenos CD59/química , Antígenos CD59/metabolismo , Gangliosídeos/química , Gangliosídeos/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Microdomínios da Membrana/metabolismo , Antígenos CD59/análise , Difusão , Fluorescência , Gangliosídeos/análise , Humanos , Microdomínios da Membrana/química , Conformação Molecular , Ligação Proteica , Fatores de Tempo
5.
Biochim Biophys Acta Gen Subj ; 1861(10): 2494-2506, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28734966

RESUMO

Gangliosides are involved in a variety of biological roles and are a component of lipid rafts found in cell plasma membranes (PMs). Gangliosides are especially abundant in neuronal PMs and are essential to their physiological functions. However, the dynamic behaviors of gangliosides have not been investigated in living cells due to a lack of fluorescent probes that behave like their parental molecules. We have recently developed, using an entirely chemical method, four new ganglioside probes (GM1, GM2, GM3, and GD1b) that act similarly to their parental molecules in terms of raft partitioning and binding affinity. Using single fluorescent-molecule imaging, we have found that ganglioside probes dynamically enter and leave rafts featuring CD59, a GPI-anchored protein. This occurs both before and after stimulation. The residency time of our ganglioside probes in rafts with CD59 oligomers was 48ms, after stimulation. The residency times in CD59 homodimer and monomer rafts were 40ms and 12ms, respectively. In this review, we introduce an entirely chemical-based ganglioside analog synthesis method and describe its application in single-molecule imaging and for the study of the dynamic behavior of gangliosides in cell PMs. Finally, we discuss how raft domains are formed, both before and after receptor engagement. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.


Assuntos
Gangliosídeo G(M1)/síntese química , Gangliosídeo G(M2)/síntese química , Gangliosídeo G(M3)/síntese química , Gangliosídeos/síntese química , Microdomínios da Membrana/metabolismo , Sondas Moleculares/síntese química , Antígenos CD59/química , Antígenos CD59/metabolismo , Configuração de Carboidratos , Sequência de Carboidratos , Linhagem Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Gangliosídeo G(M1)/análogos & derivados , Gangliosídeo G(M1)/metabolismo , Gangliosídeo G(M2)/análogos & derivados , Gangliosídeo G(M2)/metabolismo , Gangliosídeo G(M3)/análogos & derivados , Gangliosídeo G(M3)/metabolismo , Gangliosídeos/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microdomínios da Membrana/ultraestrutura , Sondas Moleculares/metabolismo , Imagem Individual de Molécula
6.
Traffic ; 15(6): 583-612, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24506328

RESUMO

Cholesterol distribution and dynamics in the plasma membrane (PM) are poorly understood. The recent development of Bodipy488-conjugated cholesterol molecule (Bdp-Chol) allowed us to study cholesterol behavior in the PM, using single fluorescent-molecule imaging. Surprisingly, in the intact PM, Bdp-Chol diffused at the fastest rate ever found for any molecules in the PM, with a median diffusion coefficient (D) of 3.4 µm²/second, which was ∼10 times greater than that of non-raft phospholipid molecules (0.33 µm²/second), despite Bdp-Chol's probable association with raft domains. Furthermore, Bdp-Chol exhibited no sign of entrapment in time scales longer than 0.5 milliseconds. In the blebbed PM, where actin filaments were largely depleted, Bdp-Chol and Cy3-conjugated dioleoylphosphatidylethanolamine (Cy3-DOPE) diffused at comparable Ds (medians = 5.8 and 6.2 µm²/second, respectively), indicating that the actin-based membrane skeleton reduces the D of Bdp-Chol only by a factor of ∼2 from that in the blebbed PM, whereas it reduces the D of Cy3-DOPE by a factor of ∼20. These results are consistent with the previously proposed model, in which the PM is compartmentalized by the actin-based membrane-skeleton fence and its associated transmembrane picket proteins for the macroscopic diffusion of all of the membrane molecules, and suggest that the probability of Bdp-Chol passing through the compartment boundaries, once it enters the boundary, is ∼10× greater than that of Cy3-DOPE. Since the compartment sizes are greater than those of the putative raft domains, we conclude that raft domains coexist with membrane-skeleton-induced compartments and are contained within them.


Assuntos
Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Compostos de Boro , Linhagem Celular , Colesterol/análogos & derivados , Difusão , Corantes Fluorescentes , Microdomínios da Membrana/efeitos dos fármacos , Fosfatidiletanolaminas/farmacologia , Ratos
7.
Nat Chem Biol ; 10(7): 524-32, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24937070

RESUMO

Methods for imaging and tracking single molecules conjugated with fluorescent probes, called single-molecule tracking (SMT), are now providing researchers with the unprecedented ability to directly observe molecular behaviors and interactions in living cells. Current SMT methods are achieving almost the ultimate spatial precision and time resolution for tracking single molecules, determined by the currently available dyes. In cells, various molecular interactions and reactions occur as stochastic and probabilistic processes. SMT provides an ideal way to directly track these processes by observing individual molecules at work in living cells, leading to totally new views of the biochemical and molecular processes used by cells whether in signal transduction, gene regulation or formation and disintegration of macromolecular complexes. Here we review SMT methods, summarize the recent results obtained by SMT, including related superresolution microscopy data, and describe the special concerns when SMT applications are shifted from the in vitro paradigms to living cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Eucarióticas/metabolismo , Corantes Fluorescentes/química , Proteínas Ligadas por GPI/metabolismo , Proteínas de Membrana/metabolismo , Fótons , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Transporte Biológico , Rastreamento de Células , Células Eucarióticas/citologia , Proteínas Ligadas por GPI/genética , Regulação da Expressão Gênica , Humanos , Proteínas de Membrana/genética , Microscopia de Fluorescência , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Processos Estocásticos
8.
Trends Biochem Sci ; 36(11): 604-15, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21917465

RESUMO

Based on recent single-molecule imaging results in the living cell plasma membrane, we propose a hierarchical architecture of three-tiered mesoscale (2-300nm) domains to represent the fundamental functional organization of the plasma membrane: (i) membrane compartments of 40-300nm in diameter due to the partitioning of the entire plasma membrane by the actin-based membrane skeleton 'fence' and transmembrane protein 'pickets' anchored to the fence; (ii) raft domains (2-20nm); and (iii) dimers/oligomers and greater complexes of membrane-associated proteins (3-10nm). The basic molecular interactions required for the signal transduction function of the plasma membrane can be fundamentally understood and conveniently summarized as the cooperative actions of these mesoscale domains, where thermal fluctuations/movements of molecules and weak cooperativity play crucial roles.


Assuntos
Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Animais , Humanos , Modelos Biológicos , Transdução de Sinais
9.
Semin Cell Dev Biol ; 23(2): 126-44, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22309841

RESUMO

Virtually all biological membranes on earth share the basic structure of a two-dimensional liquid. Such universality and peculiarity are comparable to those of the double helical structure of DNA, strongly suggesting the possibility that the fundamental mechanisms for the various functions of the plasma membrane could essentially be understood by a set of simple organizing principles, developed during the course of evolution. As an initial effort toward the development of such understanding, in this review, we present the concept of the cooperative action of the hierarchical three-tiered meso-scale (2-300 nm) domains in the plasma membrane: (1) actin membrane-skeleton-induced compartments (40-300 nm), (2) raft domains (2-20 nm), and (3) dynamic protein complex domains (3-10nm). Special attention is paid to the concept of meso-scale domains, where both thermal fluctuations and weak cooperativity play critical roles, and the coupling of the raft domains to the membrane-skeleton-induced compartments as well as dynamic protein complexes. The three-tiered meso-domain architecture of the plasma membrane provides an excellent perspective for understanding the membrane mechanisms of signal transduction.


Assuntos
Membrana Celular/química , Microdomínios da Membrana/química , Proteínas de Membrana/química , Complexos Multiproteicos/química , Transdução de Sinais , Citoesqueleto de Actina/química , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Permeabilidade da Membrana Celular , Colesterol/química , Difusão , Membranas Artificiais , Microscopia Eletrônica , Modelos Biológicos , Mapeamento de Interação de Proteínas
10.
Nat Chem Biol ; 8(9): 774-83, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22820419

RESUMO

Advanced single-molecule fluorescent imaging was applied to study the dynamic organization of raft-associated glycosylphosphatidylinositol-anchored proteins (GPI-APs) in the plasma membrane and their stimulation-induced changes. In resting cells, virtually all of the GPI-APs are mobile and continually form transient (~200 ms) homodimers (termed homodimer rafts) through ectodomain protein interactions, stabilized by the presence of the GPI-anchoring chain and cholesterol. Heterodimers do not form, suggesting a fundamental role for the specific ectodomain protein interaction. Under higher physiological expression conditions , homodimers coalesce to form hetero- and homo-GPI-AP oligomer rafts through raft-based lipid interactions. When CD59 was ligated, it formed stable oligomer rafts containing up to four CD59 molecules, which triggered intracellular Ca(2+) responses that were dependent on GPI anchorage and cholesterol, suggesting a key part played by transient homodimer rafts. Transient homodimer rafts are most likely one of the basic units for the organization and function of raft domains containing GPI-APs.


Assuntos
Glicosilfosfatidilinositóis/metabolismo , Microdomínios da Membrana , Antígenos CD59/metabolismo , Dimerização , Transferência Ressonante de Energia de Fluorescência
11.
J Cell Biol ; 223(11)2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39115447

RESUMO

Nuclear migration is critical for the proper positioning of neurons in the developing brain. It is known that bidirectional microtubule motors are required for nuclear transport, yet the mechanism of the coordination of opposing motors is still under debate. Using mouse cerebellar granule cells, we demonstrate that Nesprin-2 serves as a nucleus-motor adaptor, coordinating the interplay of kinesin-1 and dynein. Nesprin-2 recruits dynein-dynactin-BicD2 independently of the nearby kinesin-binding LEWD motif. Both motor binding sites are required to rescue nuclear migration defects caused by the loss of function of Nesprin-2. In an intracellular cargo transport assay, the Nesprin-2 fragment encompassing the motor binding sites generates persistent movements toward both microtubule minus and plus ends. Nesprin-2 drives bidirectional cargo movements over a prolonged period along perinuclear microtubules, which advance during the migration of neurons. We propose that Nesprin-2 keeps the nucleus mobile by coordinating opposing motors, enabling continuous nuclear transport along advancing microtubules in migrating cells.


Assuntos
Núcleo Celular , Dineínas , Cinesinas , Proteínas Associadas aos Microtúbulos , Microtúbulos , Proteínas do Tecido Nervoso , Neurônios , Animais , Microtúbulos/metabolismo , Neurônios/metabolismo , Cinesinas/metabolismo , Cinesinas/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Dineínas/metabolismo , Núcleo Celular/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Transporte Ativo do Núcleo Celular , Complexo Dinactina/metabolismo , Complexo Dinactina/genética , Movimento Celular , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Cerebelo/metabolismo , Cerebelo/citologia , Sítios de Ligação , Humanos
12.
Curr Opin Cell Biol ; 89: 102394, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963953

RESUMO

This review examines the dynamic mechanisms underlying cellular signaling, communication, and adhesion via transient, nano-scale, liquid-like molecular assemblies on the plasma membrane (PM). Traditional views posit that stable, solid-like molecular complexes perform these functions. However, advanced imaging reveals that many signaling and scaffolding proteins only briefly reside in these molecular complexes and that micron-scale protein assemblies on the PM, including cell adhesion structures and synapses, are likely made of archipelagoes of nanoliquid protein islands. Borrowing the concept of liquid-liquid phase separation to form micron-scale biocondensates, we propose that these nano-scale oligomers and assemblies are enabled by multiple weak but specific molecular interactions often involving intrinsically disordered regions. The signals from individual nanoliquid signaling complexes would occur as pulses. Single-molecule imaging emerges as a crucial technique for characterizing these transient nanoliquid assemblies on the PM, suggesting a shift toward a model where the fluidity of interactions underpins signal regulation and integration.


Assuntos
Membrana Celular , Humanos , Animais , Membrana Celular/metabolismo , Membrana Celular/química , Transdução de Sinais
13.
Mol Biol Cell ; 34(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37039596

RESUMO

Two very polarized views exist for understanding the cellular plasma membrane (PM). For some, it is the simple fluid described by the original Singer-Nicolson fluid mosaic model. For others, due to the presence of thousands of molecular species that extensively interact with each other, the PM forms various clusters and domains that are constantly changing and therefore, no simple rules exist that can explain the structure and molecular dynamics of the PM. In this article, we propose that viewing the PM from its two predominant components, cholesterol and actin filaments, provides an excellent and transparent perspective of PM organization, dynamics, and mechanisms for its functions. We focus on the actin-induced membrane compartmentalization and lipid raft domains coexisting in the PM and how they interact with each other to perform PM functions. This view provides an important update of the fluid mosaic model.


Assuntos
Actinas , Canto , Actinas/metabolismo , Aniversários e Eventos Especiais , Membrana Celular/metabolismo , Colesterol/metabolismo
14.
J Cell Biol ; 222(8)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37278763

RESUMO

The spatial resolution of fluorescence microscopy has recently been greatly enhanced. However, improvements in temporal resolution have been limited, despite their importance for examining living cells. Here, we developed an ultrafast camera system that enables the highest time resolutions in single fluorescent-molecule imaging to date, which were photon-limited by fluorophore photophysics: 33 and 100 µs with single-molecule localization precisions of 34 and 20 nm, respectively, for Cy3, the optimal fluorophore we identified. Using theoretical frameworks developed for the analysis of single-molecule trajectories in the plasma membrane (PM), this camera successfully detected fast hop diffusion of membrane molecules in the PM, previously detectable only in the apical PM using less preferable 40-nm gold probes, thus helping to elucidate the principles governing the PM organization and molecular dynamics. Furthermore, as described in the companion paper, this camera allows simultaneous data acquisitions for PALM/dSTORM at as fast as 1 kHz, with 29/19 nm localization precisions in the 640 × 640 pixel view-field.


Assuntos
Corantes Fluorescentes , Nanotecnologia , Membrana Celular , Difusão , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula , Biologia Celular
15.
J Cell Biol ; 222(8)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37278764

RESUMO

Using our newly developed ultrafast camera described in the companion paper, we reduced the data acquisition periods required for photoactivation/photoconversion localization microscopy (PALM, using mEos3.2) and direct stochastic reconstruction microscopy (dSTORM, using HMSiR) by a factor of ≈30 compared with standard methods, for much greater view-fields, with localization precisions of 29 and 19 nm, respectively, thus opening up previously inaccessible spatiotemporal scales to cell biology research. Simultaneous two-color PALM-dSTORM and PALM-ultrafast (10 kHz) single fluorescent-molecule imaging-tracking has been realized. They revealed the dynamic nanoorganization of the focal adhesion (FA), leading to the compartmentalized archipelago FA model, consisting of FA-protein islands with broad diversities in size (13-100 nm; mean island diameter ≈30 nm), protein copy numbers, compositions, and stoichiometries, which dot the partitioned fluid membrane (74-nm compartments in the FA vs. 109-nm compartments outside the FA). Integrins are recruited to these islands by hop diffusion. The FA-protein islands form loose ≈320 nm clusters and function as units for recruiting FA proteins.


Assuntos
Adesões Focais , Simulação de Dinâmica Molecular , Difusão , Adesões Focais/metabolismo , Integrinas/metabolismo , Imagem Individual de Molécula , Biologia Celular
16.
J Cell Biol ; 177(4): 731-42, 2007 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-17517965

RESUMO

Clusters of CD59, a glycosylphosphatidylinositol-anchored receptor (GPI-AR), with physiological sizes of approximately six CD59 molecules, recruit Galphai2 and Lyn via protein-protein and raft interactions. Lyn is activated probably by the Galphai2 binding in the same CD59 cluster, inducing the CD59 cluster's binding to F-actin, resulting in its immobilization, termed stimulation-induced temporary arrest of lateral diffusion (STALL; with a 0.57-s lifetime, occurring approximately every 2 s). Simultaneous single-molecule tracking of GFP-PLCgamma2 and CD59 clusters revealed that PLCgamma2 molecules are transiently (median = 0.25 s) recruited from the cytoplasm exclusively at the CD59 clusters undergoing STALL, producing the IP(3)-Ca(2+) signal. Therefore, we propose that the CD59 cluster in STALL may be a key, albeit transient, platform for transducing the extracellular GPI-AR signal to the intracellular IP(3)-Ca(2+) signal, via PLCgamma2 recruitment. The prolonged, analogue, bulk IP(3)-Ca(2+) signal, which lasts for more than several minutes, is likely generated by the sum of the short-lived, digital-like IP(3) bursts, each created by the transient recruitment of PLCgamma2 molecules to STALLed CD59.


Assuntos
Sinalização do Cálcio/fisiologia , Glicosilfosfatidilinositóis/fisiologia , Inositol 1,4,5-Trifosfato/fisiologia , Fosfolipase C gama/metabolismo , Receptores de Superfície Celular/fisiologia , Animais , Antígenos CD59/fisiologia , Linhagem Celular , Humanos , Microscopia de Fluorescência , Potoroidae , Ratos
17.
J Cell Biol ; 177(4): 717-30, 2007 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-17517964

RESUMO

The signaling mechanisms for glycosylphosphatidylinositol-anchored receptors (GPI-ARs) have been investigated by tracking single molecules in living cells. Upon the engagement or colloidal gold-induced cross-linking of CD59 (and other GPI-ARs) at physiological levels, CD59 clusters containing three to nine CD59 molecules were formed, and single molecules of Galphai2 or Lyn (GFP conjugates) exhibited the frequent but transient (133 and 200 ms, respectively) recruitment to CD59 clusters, via both protein-protein and lipid-lipid (raft) interactions. Each CD59 cluster undergoes alternating periods of actin-dependent temporary immobilization (0.57-s lifetime; stimulation-induced temporary arrest of lateral diffusion [STALL], inducing IP(3) production) and slow diffusion (1.2 s). STALL of a CD59 cluster was induced right after the recruitment of Galphai2. Because both Galphai2 and Lyn are required for the STALL, and because Lyn is constitutively recruited to CD59 clusters, the STALL of CD59 clusters is likely induced by the Galphai2 binding to, and its subsequent activation of, Lyn within the same CD59 cluster.


Assuntos
Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Glicosilfosfatidilinositóis/fisiologia , Receptores de Superfície Celular/fisiologia , Quinases da Família src/metabolismo , Animais , Antígenos CD59/fisiologia , Linhagem Celular , Ativação Enzimática/fisiologia , Humanos , Camundongos , Potoroidae , Ratos
18.
Protein Sci ; 31(10): e4425, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36173170

RESUMO

We challenged the stabilization of a G-protein coupled receptor (GPCR) in the active state solely by multiple amino-acid mutations without the agonist binding. For many GPCRs, the free energy of the active state is higher than that of the inactive state. When the inactive state is stabilized through the lowering of its free energy, the apparent midpoint temperature of thermal denaturation Tm exhibits a significant increase. However, this is not always the case for the stabilization of the active state. We constructed a modified version of our methodology combining statistical thermodynamics and evolutionary molecular engineering, which was recently developed for the inactive state. First, several residues to be mutated are determined using our statistical-thermodynamics theory. Second, a gene (mutant) library is constructed using Escherichia coli cells to efficiently explore most of the mutational space. Third, for the mutant screening, the mutants prepared in accordance with the library are expressed in engineered Saccharomyces cerevisiae YB14 cells which can grow only when a GPCR mutant stabilized in the active state has signaling function. For the adenosine A2A receptor tested, the methodology enabled us to sort out two triple mutants and a double mutant. It was experimentally corroborated that all the mutants exhibit much higher binding affinity for G protein than the wild type. Analyses indicated that the mutations make the structural characteristics shift toward those of the active state. However, only slight increases in Tm resulted from the mutations, suggesting the unsuitability of Tm to the stability measure for the active state.


Assuntos
Proteínas de Ligação ao GTP , Receptor A2A de Adenosina , Mutação , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/genética , Termodinâmica
19.
J Extracell Vesicles ; 10(11): e12147, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34533283

RESUMO

During embryonic development, cells differentiate in a coordinated manner, aligning their fate decisions and differentiation stages with those of surrounding cells. However, little is known about the mechanisms that regulate this synchrony. Here we show that cells in close proximity synchronize their differentiation stages and cellular phenotypes with each other via extracellular vesicle (EV)-mediated cellular communication. We previously established a mouse embryonic stem cell (ESC) line harbouring an inducible constitutively active protein kinase A (CA-PKA) gene and found that the ESCs rapidly differentiated into mesoderm after PKA activation. In the present study, we performed a co-culture of Control-ESCs and PKA-ESCs, finding that both ESC types rapidly differentiated in synchrony even when PKA was activated only in PKA-ESCs, a phenomenon we named 'Phenotypic Synchrony of Cells (PSyC)'. We further demonstrated PSyC was mediated by EVs containing miR-132. PKA-ESC-derived EVs and miR-132-containing artificial nano-vesicles similarly enhanced mesoderm and cardiomyocyte differentiation in ESCs and ex vivo embryos, respectively. PSyC is a new form of cell-cell communication mediated by the EV regulation of neighbouring cells and could be broadly involved in tissue development and homeostasis.


Assuntos
Vesículas Extracelulares/metabolismo , Animais , Diferenciação Celular , Feminino , Camundongos , Nanopartículas , Fenótipo , Gravidez
20.
ACS Chem Biol ; 15(9): 2577-2587, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32808756

RESUMO

G protein-coupled receptors (GPCRs) transduce extracellular signals into cells by interacting with G proteins and arrestins. Emerging evidence suggests that GPCRs on the plasma membrane are in a dynamic equilibrium among monomers, dimers, and larger oligomers. Nevertheless, the role of the oligomer formation in the GPCR signal transduction remains unclear. Using multicolor single-molecule live-cell imaging, we show a dynamic interconversion between small and large oligomer states of a chemoattractant GPCR, Formyl Peptide Receptor 1 (FPR1), and its binding affinity with G protein. Full agonist stimulation increased a fraction of large FPR1 oligomers, which allowed for prolonged FPR1-G protein interaction. The G protein interaction with FPR1 was most stabilized at the full agonist-bound large FPR1 oligomers. Based on these results, we propose that G protein-mediated signal transduction may be regulated synergistically by the ligand-binding and FPR1 oligomerization. Cooperative signal control induced by receptor oligomerization is anticipated as a target for drug discovery.


Assuntos
Receptores de Formil Peptídeo/metabolismo , Transdução de Sinais/fisiologia , Corantes Fluorescentes/química , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Ligantes , Microscopia de Fluorescência , Ligação Proteica , Multimerização Proteica , Receptores de Formil Peptídeo/química , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA