RESUMO
BACKGROUND: p-Boronophenylalanine (10BPA) is a powerful 10B drug used in current clinical trials of BNCT. For BNCT to be successful, a high (500 mg/kg) dose of 10BPA must be administered over a few hours. Here, we report BNCT efficacy after rapid, ultralow-dose administration of either tumor vasculature-specific annexin A1-targeting IFLLWQR (IF7)-conjugated 10BPA or borocaptate sodium (10BSH). METHODS: (1) IF7 conjugates of either 10B drugs intravenously injected into MBT2 bladder tumor-bearing mice and biodistribution of 10B in tumors and normal organs analyzed by prompt gamma-ray analysis. (2) Therapeutic effect of IF7-10B drug-mediated BNCT was assessed by either MBT2 bladder tumor bearing C3H/He mice and YTS-1 tumor bearing nude mice. RESULTS: Intravenous injection of IF7C conjugates of either 10B drugs into MBT2 bladder tumor-bearing mice promoted rapid 10B accumulation in tumor and suppressed tumor growth. Moreover, multiple treatments at ultralow (10-20 mg/kg) doses of IF7-10B drug-mediated BNCT significantly suppressed tumor growth in a mouse model of human YTS-1 bladder cancer, with increased Anxa1 expression in tumors and infiltration by CD8-positive lymphocytes. CONCLUSIONS: We conclude that IF7 serves as an efficient 10B delivery vehicle by targeting tumor tissues via the tumor vasculature and could serve as a relevant vehicle for BNCT drugs.
Assuntos
Anexina A1/metabolismo , Compostos de Boro/administração & dosagem , Terapia por Captura de Nêutron de Boro/métodos , Neovascularização Patológica/radioterapia , Fragmentos de Peptídeos/metabolismo , Fenilalanina/análogos & derivados , Neoplasias da Bexiga Urinária/radioterapia , Animais , Apoptose , Compostos de Boro/química , Compostos de Boro/metabolismo , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Nus , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Fenilalanina/administração & dosagem , Fenilalanina/química , Fenilalanina/metabolismo , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Annexin A1 is expressed specifically on the tumour vasculature surface. Intravenously injected IF7 targets tumour vasculature via annexin A1. We tested the hypothesis that IF7 overcomes the blood-brain barrier and that the intravenously injected IF7C(RR)-SN38 eradicates brain tumours in the mouse. METHODS: (1) A dual-tumour model was generated by inoculating luciferase-expressing melanoma B16 cell line, B16-Luc, into the brain and under the skin of syngeneic C57BL/6 mice. IF7C(RR)-SN38 was injected intravenously daily at 7.0 µmoles/kg and growth of tumours was assessed by chemiluminescence using an IVIS imager. A similar dual-tumour model was generated with the C6-Luc line in immunocompromised SCID mice. (2) IF7C(RR)-SN38 formulated with 10% Solutol HS15 was injected intravenously daily at 2.5 µmoles/kg into two brain tumour mouse models: B16-Luc cells in C57BL/6 mice, and C6-Luc cells in nude mice. RESULTS: (1) Daily IF7C(RR)-SN38 injection suppressed tumour growth regardless of cell lines or mouse strains. (2) Daily injection of Solutol-formulated IF7C(RR)-SN38 led into complete disappearance of B16-Luc brain tumour in C57BL/6 mice, whereas this did not occur in C6-Luc in nude mice. CONCLUSIONS: IF7C(RR)-SN38 crosses the blood-brain barrier and suppresses growth of brain tumours in mouse models. Solutol HS15-formulated IF7C(RR)-SN38 may have promoted an antitumour immune response.
Assuntos
Anexina A1/metabolismo , Antineoplásicos/farmacologia , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas , Portadores de Fármacos/farmacologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Peptídeos , RatosRESUMO
OBJECTIVES: To evaluate the expression of annexin A1 protein in patients with renal cell carcinoma. METHODS: Annexin A1 expression was examined in renal cell carcinoma specimens from 27 patients, and their disease-free survival was analyzed using the log-rank test. Annexin A1 knockdown in the human renal cell carcinoma cell line Caki-1 was carried out, and its proliferation, invasion, motility and adhesion were compared with those of control cells. RESULTS: In 13 out of 27 patients, annexin A1 was highly expressed in the membrane of renal cell carcinoma tumor cells, whereas in the rest of the patients, annexin A1 expression was weak or negligible in the membrane of those cells. Patients with high annexin A1 expression had significantly poorer disease-free survival than those with weak or negligible annexin A1 expression (P = 0.031). In the renal cell carcinoma cell line, annexin A1 knockdown cells showed significantly decreased proliferation, invasion, motility and adhesion relative to control cells, and expressed lower relative levels of membrane-type 1 matrix metalloproteinase and hypoxia-inducible factor 1-alpha transcripts, showing a potential pathway regulated by annexin A1. CONCLUSION: Annexin A1 is associated with renal cell carcinoma malignant potential and could serve as a marker of poor prognosis.
Assuntos
Anexina A1/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Idoso , Idoso de 80 Anos ou mais , Anexina A1/genética , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/mortalidade , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/mortalidade , Masculino , Metaloproteinase 14 da Matriz/metabolismo , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , Prognóstico , Análise de SobrevidaRESUMO
This study reports the determination of the carbohydrate epitope of monoclonal antibody F77 previously raised against human prostate cancer PC-3 cells (Zhang, G., Zhang, H., Wang, Q., Lal, P., Carroll, A. M., de la Llera-Moya, M., Xu, X., and Greene, M. I. (2010) Proc. Natl. Acad. Sci. U. S. A. 107, 732-737). We performed a series of co-transfections using mammalian expression vectors encoding specific glycosyltransferases. We thereby identified branching enzymes and FUT1 (required for Fucα1â2Gal linkage) as being essential for F77 antigen formation. When immortalized normal prostate 267B1 cells were transfected with FUT1 alone, cells showed weak expression of F77 antigen. By contrast, cells co-transfected with FUT1 plus either GCNT1, GCNT2, or GCNT3 (an enzyme required to form GlcNAcß1â6Gal/GalNAc) showed robust F77 antigen expression, suggesting that F77 specifically binds to Fucα1â2Galß1â4GlcNAcß1â6Gal/GalNAc. RT-PCR for FUT1, GCNT1, GCNT2, and GCNT3 showed that F77-positive cell lines indeed express transcripts encoding FUT1 plus one GCNT. F77-positive prostate cancer cells transfected with siRNAs targeting FUT1, GCNT2, and GCNT3 showed significantly reduced F77 antigen, confirming the requirement of these enzymes for epitope synthesis. We also found that hypoxia induces F77 epitope expression in immortalized prostate RWPE1 cells, which express F77 antigen moderately under normoxia but at an elevated level under hypoxia. Quantitative RT-PCR demonstrated up-regulation of FUT1, GCNT2, and GCNT3 transcripts in RWPE1 cells under hypoxia, suggesting that hypoxia up-regulates glycosyltransferase expression required for F77 antigen synthesis. These results define the F77 epitope and provide a potential mechanism for F77 antigen synthesis in malignant prostate cancer.
Assuntos
Anticorpos Monoclonais/imunologia , Glicosiltransferases/genética , Antígeno Prostático Específico/imunologia , Sistema ABO de Grupos Sanguíneos/imunologia , Sequência de Bases , Sequência de Carboidratos , Linhagem Celular Tumoral , Primers do DNA , HumanosRESUMO
Monoclonal antibody F77 was previously raised against human prostate cancer cells and has been shown to recognize a carbohydrate antigen, but the carbohydrate sequence of the antigen was elusive. Here, we make multifaceted approaches to characterize F77 antigen, including binding analyses with the glycolipid extract of the prostate cancer cell line PC3, microarrays with sequence-defined glycan probes, and designer arrays from the O-glycome of an antigen-positive mucin, in conjunction with mass spectrometry. Our results reveal F77 antigen to be expressed on blood group H on a 6-linked branch of a poly-N-acetyllactosamine backbone. We show that mAb F77 can also bind to blood group A and B analogs but with lower intensities. We propose that the close association of F77 antigen with prostate cancers is a consequence of increased blood group H expression together with up-regulated branching enzymes. This is in contrast to other epithelial cancers that have up-regulated branching enzymes but diminished expression of H antigen. With knowledge of the structure and prevalence of F77 antigen in prostate cancer, the way is open to explore rationally its application as a biomarker to detect F77-positive circulating prostate cancer-derived glycoproteins and tumor cells.
Assuntos
Antígenos de Neoplasias/química , Mucinas/química , Neoplasias da Próstata/imunologia , Sequência de Carboidratos , Humanos , Masculino , Dados de Sequência MolecularRESUMO
Krüppel-associated box-containing zinc finger proteins (KRAB-ZFPs) regulate a wide range of cellular processes. KRAB-ZFPs have a KRAB domain, which binds to transcriptional corepressors, and a zinc finger domain, which binds to DNA to activate or repress gene transcription. Here, we characterize ZNF777, a member of KRAB-ZFPs. We show that ZNF777 localizes to the nucleus and inducible overexpression of ZNF777 inhibits cell proliferation in a manner dependent on its zinc finger domain but independent of its KRAB domain. Intriguingly, ZNF777 overexpression drastically inhibits cell proliferation at low cell density but slightly inhibits cell proliferation at high cell density. Furthermore, ZNF777 overexpression decreases the mRNA level of FAM129A irrespective of cell density. Importantly, the protein level of FAM129A strongly decreases at low cell density, but at high cell density the protein level of FAM129A does not decrease to that observed at low cell density. ZNF777-mediated inhibition of cell proliferation is attenuated by overexpression of FAM129A at low cell density. Furthermore, ZNF777-mediated down-regulation of FAM129A induces moderate levels of the cyclin-dependent kinase inhibitor p21. These results suggest that ZNF777 overexpression inhibits cell proliferation at low cell density and that p21 induction by ZNF777-mediated down-regulation of FAM129A plays a role in inhibition of cell proliferation.
Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Western Blotting , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citometria de Fluxo , Células HeLa , Humanos , Interferência de RNA , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genéticaRESUMO
Chst10 adds sulfate to glucuronic acid to form a carbohydrate antigen, HNK-1, in glycoproteins and glycolipids. To determine the role of Chst10 in vivo, we generated systemic Chst10-deficient mutant mice. Although Chst10(-/-) mice were born and grew to adulthood with no gross defects, they were subfertile. Uteri from Chst10(-/-) females at the pro-estrus stage were larger than those from wild-type females and exhibited a thick uterine endometrium. Serum estrogen levels in Chst10(-/-) females were higher than those from wild-type females, suggesting impaired down-regulation of estrogen. Because steroid hormones are often conjugated to glucuronic acid, we hypothesized that Chst10 sulfates glucuronidated steroid hormone to regulate steroid hormone in vivo. Enzymatic activity assays and structural analysis of Chst10 products by HPLC and mass spectrometry revealed that Chst10 indeed sulfates glucuronidated estrogen, testosterone, and other steroid hormones. We also identified an HPLC peak corresponding to sulfated and glucuronidated estradiol in serum from wild-type but not from Chst10 null female mice. Estrogen-response element reporter assays revealed that Chst10-modified estrogen likely did not bind to its receptor. These results suggest that subfertility exhibited by female mice following Chst10 loss results from dysregulation of estrogen. Given that Chst10 transfers sulfates to several steroid hormones, Chst10 likely functions in widespread regulation of steroid hormones in vivo.
Assuntos
Esteroides/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo , Animais , Estrogênios/sangue , Feminino , Regulação da Expressão Gênica , Vetores Genéticos , Ácido Glucurônico/química , Glicolipídeos/metabolismo , Células HEK293 , Humanos , Células Matadoras Naturais/citologia , Camundongos , Camundongos Transgênicos , Modelos Genéticos , Neurônios/metabolismo , Recombinação Genética , Testosterona/sangueRESUMO
Although numerous carbohydrates play significant roles in mammalian cells, carbohydrate-based drug discovery has not been explored due to the technical difficulty of chemically synthesizing complex carbohydrate structures. Previously, we identified a series of carbohydrate mimetic peptides and found that a 7-mer peptide, designated I-peptide, inhibits hematogenous carbohydrate-dependent cancer cell colonization. During analysis of the endothelial surface receptor for I-peptide, we found that I-peptide bound to annexin 1 (Anxa1). Because Anxa1 is a highly specific tumor vasculature surface marker, we hypothesized that an I-peptide-like peptide could target anticancer drugs to the tumor vasculature. This study identifies IFLLWQR peptide, designated IF7, as homing to tumors. When synthetic IF7 peptide was conjugated to fluorescent Alexa 488 (A488) and injected intravenously into tumor-bearing mice, IF7-A488 targeted tumors within minutes. IF7 conjugated to the potent anticancer drug SN-38 and injected intravenously into nude mice carrying human colon HCT116 tumors efficiently suppressed tumor growth at low dosages with no apparent side effects. These results suggest that IF7 serves as an efficient drug delivery vehicle by targeting Anxa1 expressed on the surface of tumor vasculature. Given its extremely specific tumor-targeting activity, IF7 may represent a clinically relevant vehicle for anticancer drugs.
Assuntos
Carboidratos/química , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Anexina A1/química , Anexina A1/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Camptotecina/administração & dosagem , Camptotecina/análogos & derivados , Camptotecina/química , Camptotecina/farmacologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Células HCT116 , Humanos , Hidrazinas/química , Injeções Intravenosas , Irinotecano , Medições Luminescentes/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Mimetismo Molecular , Dados de Sequência Molecular , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Peptídeos/administração & dosagem , Peptídeos/química , Ligação Proteica , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
A humanized monoclonal antibody raised against human ovarian cancer RMG-I cells and designated as HMOCC-1 (Suzuki, N., Aoki, D., Tamada, Y., Susumu, N., Orikawa, K., Tsukazaki, K., Sakayori, M., Suzuki, A., Fukuchi, T., Mukai, M., Kojima-Aikawa, K., Ishida, I., and Nozawa, S. (2004) Gynecol. Oncol. 95, 290-298) was characterized for its carbohydrate epitope structure. Specifically, a series of co-transfections was performed using mammalian expression vectors encoding specific glycosyltransferases and sulfotransferases. These experiments identified one sulfotransferase, GAL3ST3, and one glycosyltransferase, B3GNT7, as required for HMOCC-1 antigen formation. They also suggested that the sulfotransferase CHST1 regulates the abundance and intensity of HMOCC-1 antigen. When HEK293T cells were co-transfected with GAL3ST3 and B3GNT7 expression vectors, transfected cells weakly expressed HMOCC-1 antigen. When cells were first co-transfected with GAL3ST3 and B3GNT7 and then with CHST1, the resulting cells strongly expressed HMOCC-1 antigen. However, when cells were transfected with a mixture of GAL3ST3 and CHST1 before or after transfection with B3GNT7, the number of antigen-positive cells decreased relative to the number seen with only GAL3ST3 and B3GNT7, suggesting that CHST1 plays a regulatory role in HMOCC-1 antigen formation. Because these results predicted that HMOCC-1 antigens are SO(3) â 3Galß1 â 4GlcNAcß1 â 3(±SO(3) â 6)Galß1 â 4GlcNAc, we chemically synthesized mono- and disulfated and unsulfated oligosaccharides. Immunoassays using these oligosaccharides as inhibitors showed the strongest activity by disulfated tetrasaccharide, weak but positive activity by monosulfated tetrasaccharide at the terminal galactose, and no activity by nonsulfated tetrasaccharides. These results establish the HMOCC-1 epitope, which should serve as a useful reagent to further characterize ovarian cancer.
Assuntos
Amino Açúcares/imunologia , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos/imunologia , Epitopos/imunologia , Oligossacarídeos/imunologia , Neoplasias Ovarianas/imunologia , Amino Açúcares/síntese química , Animais , Células CHO , Sequência de Carboidratos , Cricetinae , Dissulfetos/síntese química , Dissulfetos/imunologia , Mapeamento de Epitopos , Feminino , Células HEK293 , Humanos , Dados de Sequência Molecular , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Oligossacarídeos/síntese química , Neoplasias Ovarianas/patologia , RNA Interferente Pequeno/farmacologia , Sulfotransferases/genética , Sulfotransferases/metabolismo , Células Tumorais Cultivadas , Carboidrato SulfotransferasesRESUMO
In an effort to prime our mass spectrometry (MS)-based sulfoglycomic mapping platform technology for facile identification of sulfated lacdiNAc (GalNAcß1-4GlcNAcß1-), we have re-examined the N-glycans of bovine thyroid stimulating hormone. We showed that MALDI-MS mapping of permethylated glycans in negative ion mode can give an accurate representation of the sulfated glycans and, through MS/MS, diagnostic ions can be derived that we can collectively define the presence of a terminal sulfated lacdiNAc moiety at high sensitivity. Based on these ions, which can also be produced by nanoESI-MS(n), we demonstrated that the glycome of an ovarian carcinoma cell line, RMG-1, comprises a high abundance of sulfated lacdiNAc epitopes carried on multiantennary complex type N-glycans alongside fucosylated, sialylated and/or sulfated lacNAc antennae. This represents the first report of a natural glycomic occurrence of sulfated lacdiNAc on a cell line, as opposed to other better-characterized presence on secreted glycoproteins from a handful of sources. It is anticipated that with improved methods of detection such as that developed in this work, we are likely to identify a wider occurrence of sulfated lacdiNAc and be able to more accurately delineate the regulatory mechanism dictating the choice of a cell type in synthesizing sulfated, sialylated, fucosylated and/or non-substituted lacdiNAc.
Assuntos
Lactose/análogos & derivados , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Bovinos , Lactose/química , Tireotropina/químicaRESUMO
Phage display technology is an emerging drug discovery tool. Using that approach, short peptides that mimic part of a carbohydrate's conformation are selected by screening a peptide-displaying phage library with anti-carbohydrate antibodies. Chemically synthesized peptides with an identified sequence have been used as an alternative ligand to carbohydrate-binding proteins. These peptides represent research tools useful to assay the activities of glycosyltransferases and/or sulfotransferases or to inhibit the carbohydrate-dependent binding of proteins in vitro and in vivo. Peptides can also serve as immunogens to raise anti-carbohydrate antibodies in vivo in animals. Phage display has also been used in single-chain antibody technology by inserting an immunoglobulin's variable region sequence into the phage. A single-chain antibody library can then be screened with a carbohydrate antigen as the target, resulting in a recombinant anti-carbohydrate antibody with high affinity to the antigen. This review provides examples of successful applications of peptide-displaying phage technology to glycobiology. Such an approach should benefit translational research by supplying carbohydrate-mimetic peptides and carbohydrate-binding polypeptides.
Assuntos
Biblioteca de Peptídeos , Sequência de Aminoácidos , Animais , Antígenos/química , Materiais Biomiméticos , Glicômica , Humanos , Proteínas Imobilizadas , Peptídeos/química , Peptídeos/imunologia , Polissacarídeos/imunologia , Ligação Proteica , Anticorpos de Cadeia Única/isolamento & purificaçãoRESUMO
BACKGROUND: Trophinin is an intrinsic membrane protein that forms a complex in the cytoplasm with bystin and tastin, linking it microtubule-associated motor dynein (ATPase) in some cell types. Previously, we found that human sperm tails contain trophinin, bystin and tastin proteins, and that trophinin-binding GWRQ (glycine, tryptophan, arginine, glutamine) peptide enhanced motility of human sperm. METHODS: Immunohistochemistry was employed to determine trophinin protein in mouse spermatozoa from wild type mouse, by using spermatozoa from trophinin null mutant mice as a negative control. Multivalent 8-branched GWRQ (glycine, tryptophan, arginine, glutamine) peptide or GWRQ-MAPS, was chemically synthesized, purified by HPLC and its structure was confirmed by MALDI-TOF mass spectrometry. Effect of GWRQ-MAPS on mouse spermatozoa from wild type and trophinin null mutant was assessed by a computer-assisted semen analyzer (CASA). RESULTS: Anti-trophinin antibody stained the principal (central) piece of the tail of wild type mouse sperm, whereas the antibody showed no staining on trophinin null sperm. Phage particles displaying GWRQ bound to the principal piece of sperm tail from wild type but not trophinin null mice. GWRQ-MAPS enhanced motility of spermatozoa from wild type but not trophinin null mice. CASA showed that GWRQ-MAPS enhanced both progressive motility and rapid motility in wild type mouse sperm. CONCLUSIONS: Present study established the expression of trophinin in the mouse sperm tail and trophinin-dependent effect of GWRQ-MAPS on sperm motility. GWRQ causes a significant increase in sperm motility.
Assuntos
Moléculas de Adesão Celular/fisiologia , Peptídeos/fisiologia , Motilidade dos Espermatozoides/fisiologia , Regulação para Cima/fisiologia , Animais , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica/fisiologiaRESUMO
Although numerous carbohydrates play significant roles in mammalian cells, development of carbohydrate-based reagents and therapeutics are hampered by the technical difficulty of chemically synthesizing complex carbohydrate structures. Use of carbohydrate mimetic peptides circumvents this difficulty, as short peptide can be easily synthesized and modified. We as well as others identified carbohydrate mimetic peptides by screening peptide displaying phage library using anti-carbohydrate antibodies and lectins. This review introduces our experiences with I-peptide that was used for identification of new carbohydrate binding receptor expressed in the lung endothelial cells, and those with IF7 peptide that can be used as a therapeutic against malignant tumors.
Assuntos
Neoplasias/metabolismo , Peptídeos/farmacologia , Animais , Anexina A1/metabolismo , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Carboidratos , Humanos , Pulmão/metabolismo , Neoplasias/tratamento farmacológico , Peptídeos/química , Peptídeos/uso terapêuticoRESUMO
Alpha-dystroglycan (alpha-DG) represents a highly glycosylated cell surface molecule that is expressed in the epithelial cell-basement membrane (BM) interface and plays an essential role in epithelium development and tissue organization. The alpha-DG-mediated epithelial cell-BM interaction is often impaired in invasive carcinomas, yet roles and underlying mechanisms of such an impaired interaction in tumor progression remain unclear. We report here a suppressor function of laminin-binding glycans on alpha-DG in tumor progression. In aggressive prostate and breast carcinoma cell lines, laminin-binding glycans are dramatically decreased, although the amount of alpha-DG and beta-dystroglycan is maintained. The decrease of laminin-binding glycans and consequent increased cell migration were associated with the decreased expression of beta3-N-acetylglucosaminyltransferase-1 (beta3GnT1). Forced expression of beta3GnT1 in aggressive cancer cells restored the laminin-binding glycans and decreased tumor formation. beta3GnT1 was found to be required for laminin-binding glycan synthesis through formation of a complex with LARGE, thus regulating the function of LARGE. Interaction of the laminin-binding glycans with laminin and other adhesive molecules in BM attenuates tumor cell migratory potential by antagonizing ERK/AKT phosphorylation induced by the components in the ECM. These results identify a previously undescribed role of carbohydrate-dependent cell-BM interaction in tumor suppression and its control by beta3GnT1 and LARGE.
Assuntos
Distroglicanas/metabolismo , Laminina/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Movimento Celular , Matriz Extracelular/metabolismo , Feminino , Glicosilação , Humanos , Integrinas/metabolismo , Ligantes , Masculino , Modelos Biológicos , Fenótipo , Polissacarídeos/metabolismo , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Ligação Proteica , Transdução de SinaisRESUMO
Cell surfaces of epithelial cancer are covered by complex carbohydrates, whose structures function in malignancy and metastasis. However, the mechanism underlying carbohydrate-dependent cancer metastasis has not been defined. Previously, we identified a carbohydrate-mimicry peptide designated I-peptide, which inhibits carbohydrate-dependent lung colonization of sialyl Lewis X-expressing B16-FTIII-M cells in E/P-selectin doubly-deficient mice. We hypothesized that lung endothelial cells express an unknown carbohydrate receptor, designated as I-peptide receptor (IPR), responsible for lung colonization of B16-FTIII-M cells. Here, we visualized IPR by in vivo biotinylation, which revealed that the major IPR is a group of 35-kDa proteins. IPR proteins isolated by I-peptide affinity chromatography were identified by proteomics as Ser/Arg-rich alternative pre-mRNA splicing factors or Sfrs1, Sfrs2, Sfrs5, and Sfrs7 gene products. Bacterially expressed Sfrs1 protein bound to B16-FTIII-M cells but not to parental B16 cells. Recombinant Sfrs1 protein bound to a series of fucosylated oligosaccharides in glycan array and plate-binding assays. When anti-Sfrs antibodies were injected intravenously into mice, antibodies labeled a subset of lung capillaries. Anti-Sfrs antibodies inhibited homing of I-peptide-displaying phage to the lung colonization of B16-FTIII-M cells in vivo in the mouse. These results strongly suggest that Sfrs proteins are responsible for fucosylated carbohydrate-dependent lung metastasis of epithelial cancers.
Assuntos
Metabolismo dos Carboidratos , Células Endoteliais/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Nucleares/metabolismo , Animais , Anticorpos/imunologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Camundongos , Camundongos Endogâmicos C57BLRESUMO
The process of human embryo implantation is mediated not only by evolutionarily conserved mechanisms, but also by a mechanism unique to humans. Evidence suggests that the cell adhesion molecules, L-selectin and trophinin, play a unique role in human embryo implantation. Here, we describe the dual roles of mucin carbohydrate ligand for L-selectin and trophinin protein and of the trophinin-associated proteins bystin and tastin. We then describe trophinin-mediated signal transduction in trophectoderm cells and endometrial epithelial cells. This review also covers cadherin and integrin in human embryo implantation.
Assuntos
Moléculas de Adesão Celular/fisiologia , Implantação do Embrião , Células Epiteliais/metabolismo , Transdução de Sinais , Caderinas/fisiologia , Humanos , Integrinas/fisiologia , Selectina L/fisiologiaRESUMO
Efficient delivery of subunit vaccines to dendritic cells (DCs) is necessary to improve vaccine efficacy, because the vaccine antigen alone cannot induce sufficient protective immunity. Here, we identified DC-targeting peptides using a phage display system and demonstrated the potential of these peptides as antigen-delivery carriers to improve subunit vaccine effectiveness in mice. The fusion of antigen proteins and peptides with DC-targeting peptides induced strong antigen-specific IgG responses, even in the absence of adjuvants. In addition, the DC-targeting peptide improved the distribution of antigens to DCs and antigen presentation by DCs. The combined use of an adjuvant with a DC-targeting peptide improved the effectiveness of the vaccine. Furthermore, nucleolin, located on the DC surface, was identified as the receptor for DC-targeting peptide, and nucleolin was indispensable for the vaccine effect of the DC-targeting peptide. Overall, the findings of this study could be useful for developing subunit vaccines against infectious diseases.
RESUMO
Alterations in glycosylation play an important role during intestinal cell differentiation. Here, we compared expression of mucin-type O-glycan synthases from proliferating and differentiated HT-29 and Caco-2 cells. Mucin-type O-glycan structures were analyzed at both stages by mass spectrometry. Core2 ß1,6-N-acetylglucosaminyltransferase-2 (C2GnT-2) was markedly increased in differentiated HT-29 and Caco-2 cells, but the core3 structure was hardly detectable. To determine whether such differential expression of mucin-type O-glycan structures has physiological significance in intestinal cell differentiation, expression of sucrase isomaltase (SI) and dipeptidyl-peptidase IV (DPP-IV), two well known intestinal differentiation markers, was examined. Interestingly, the fully glycosylated mature form of SI was decreased in C2GnT-2 knock-out mice but not in core2 N-acetylglucosaminyltransferase-3 (C2GnT-3) nulls. In addition, expression of SI and DPP-IV was dramatically reduced in C2GnT-1-3 triple knock-out mice. These patterns were confirmed by RNAi analysis; C2GnT-2 knockdown significantly reduced cell surface expression of SI and DPP-IV in Caco-2 cells. Similarly, overexpression of the core3 structure in HT-29 cells attenuated cell surface expression of both enzymes. These findings indicate that core3 O-glycan structure regulates cell surface expression of SI and DPP-IV and that core2 O-glycan is presumably an essential mucin-type O-glycan structure found in both molecules in vivo. Finally, goblet cells in the upper part of the crypt showed impaired maturation in the core2 O-glycan-deficient mice. These studies are the first to clearly identify functional mucin-type O-glycan structures modulating cell surface expression of SI and DPP-IV during the intestinal cell differentiation.
Assuntos
Diferenciação Celular , Dipeptidil Peptidase 4/metabolismo , Regulação Enzimológica da Expressão Gênica , Intestinos/citologia , Intestinos/enzimologia , N-Acetilglucosaminiltransferases/química , Complexo Sacarase-Isomaltase/metabolismo , Animais , Células CACO-2 , Dipeptidil Peptidase 4/genética , Glicosilação , Células HT29 , Humanos , Intestinos/química , Camundongos , Camundongos Knockout , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Complexo Sacarase-Isomaltase/genéticaRESUMO
We previously reported that IF7 peptide, which binds to the annexin A1 (ANXA1) N-terminus, functions as a tumor vasculature-targeted drug delivery vehicle after intravenous injection. To enhance IF7 stability in vivo, we undertook mirror-image peptide phage display using a synthetic D-peptide representing the ANXA1 N-terminus as target. We then identified peptide sequences, synthesized them as D-amino acids, and designated the resulting peptide dTIT7, which we showed bound to the ANXA1 N-terminus. Whole body imaging of mouse brain tumor models injected with near infrared fluorescent IRDye-conjugated dTIT7 showed fluorescent signals in brain and kidney. Furthermore, orally-administered dTIT7/geldanamycin (GA) conjugates suppressed brain tumor growth. Ours is a proof-of-concept experiment showing that ANXA1-binding D-peptide can be developed as an orally-administrable tumor vasculature-targeted therapeutic.