Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 79(5): 234, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35397671

RESUMO

Lewy body (LB), which mainly consists of abnormal α-synuclein (αS) aggregates, is a histological hallmark of Parkinson's disease (PD). αS aggregation and LB inclusions are induced by spreading αS fibrils to neurons; therefore, the formation and transmission of αS fibrils to neurons may play an essential role in initiating LB formation in neurons. αS expressed in neurons is released into the extracellular space and taken up by macrophages and microglia; therefore, we hypothesized that macrophages/microglia play a role in the formation and spread of αS fibrils. In this study, we aimed to investigate the involvement of macrophages/microglia in the formation and spread of αS fibrils using transgenic animals that express human αS in macrophages/microglia. Transgenic zebrafish expressing A53T mutated αS (αS_A53T) in macrophages/microglia revealed αS accumulation in neurons. Transcriptome analysis by RNA-seq of human αS and αS_A53T expressing zebrafish revealed that kinase genes and E3 ubiquitin protein ligase genes were significantly high, and neuronal activity and transport-related Gene Ontology terms were also isolated. Meanwhile, αS_A53T monomers were taken up by A-THP-1 cells; processed to larger molecules, which could be αS fibrils; and released from macrophage cells. Furthermore, the ubiquitin-proteasome system modulated αS fibrils in A-THP-1 cells. αS fibrils suggest being formed from monomers in macrophages and spread to neurons to induce αS aggregates. Therefore, macrophages may play an essential role in the formation of αS aggregates and the pathogenesis of PD.


Assuntos
Macrófagos , Neurônios , alfa-Sinucleína , Animais , Animais Geneticamente Modificados , Humanos , Corpos de Inclusão/metabolismo , Macrófagos/metabolismo , Neurônios/metabolismo , Doença de Parkinson/patologia , Células THP-1 , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
2.
J Immunol ; 201(2): 635-651, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29907708

RESUMO

Macrophages manifest distinct phenotype according to the organs in which they reside. In addition, they flexibly switch their character in adaptation to the changing environment. However, the molecular basis that explains the conversion of the macrophage phenotype has so far been unexplored. We find that CD169+ macrophages change their phenotype by regulating the level of a transcription factor Maf both in vitro and in vivo in C57BL/6J mice. When CD169+ macrophages were exposed to bacterial components, they expressed an array of acute inflammatory response genes in Maf-dependent manner and simultaneously start to downregulate Maf. This Maf suppression is dependent on accelerated degradation through proteasome pathway and microRNA-mediated silencing. The downregulation of Maf unlocks the NF-E2-related factor 2-dominant, cytoprotective/antioxidative program in the same macrophages. The present study provides new insights into the previously unanswered question of how macrophages initiate proinflammatory responses while retaining their capacity to repair injured tissues during inflammation.


Assuntos
Inflamação/imunologia , Macrófagos/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-maf/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fenótipo , Proteólise , Proteínas Proto-Oncogênicas c-maf/genética , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo
3.
Opt Express ; 27(15): 20435-20443, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31510137

RESUMO

We present a machine-learning experiment involving evaporative cooling of gaseous 87Rb atoms. The evaporation trajectory was optimized to maximize the number of atoms cooled down to a Bose-Einstein condensate using Bayesian optimization. After 300 trials within 3 hours, Bayesian optimization discovered trajectories that achieved atom numbers comparable with those of manual tuning by a human expert. Analysis of the machine-learned trajectories revealed minimum requirements for successful evaporative cooling. We found that the manually obtained curve and the machine-learned trajectories were quite similar in terms of evaporation efficiency, although the manual and machine-learned evaporation ramps were significantly different.

4.
Nature ; 502(7469): 76-9, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24067608

RESUMO

The existence of bound states of elementary spin waves (magnons) in one-dimensional quantum magnets was predicted almost 80 years ago. Identifying signatures of magnon bound states has so far remained the subject of intense theoretical research, and their detection has proved challenging for experiments. Ultracold atoms offer an ideal setting in which to find such bound states by tracking the spin dynamics with single-spin and single-site resolution following a local excitation. Here we use in situ correlation measurements to observe two-magnon bound states directly in a one-dimensional Heisenberg spin chain comprising ultracold bosonic atoms in an optical lattice. We observe the quantum dynamics of free and bound magnon states through time-resolved measurements of two spin impurities. The increased effective mass of the compound magnon state results in slower spin dynamics as compared to single-magnon excitations. We also determine the decay time of bound magnons, which is probably limited by scattering on thermal fluctuations in the system. Our results provide a new way of studying fundamental properties of quantum magnets and, more generally, properties of interacting impurities in quantum many-body systems.

5.
Nature ; 491(7422): 87-91, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23128229

RESUMO

The ability to control and tune interactions in ultracold atomic gases has paved the way for the realization of new phases of matter. So far, experiments have achieved a high degree of control over short-range interactions, but the realization of long-range interactions has become a central focus of research because it would open up a new realm of many-body physics. Rydberg atoms are highly suited to this goal because the van der Waals forces between them are many orders of magnitude larger than those between ground-state atoms. Consequently, mere laser excitation of ultracold gases can cause strongly correlated many-body states to emerge directly when atoms are transferred to Rydberg states. A key example is a quantum crystal composed of coherent superpositions of different, spatially ordered configurations of collective excitations. Here we use high-resolution, in situ Rydberg atom imaging to measure directly strong correlations in a laser-excited, two-dimensional atomic Mott insulator. The observations reveal the emergence of spatially ordered excitation patterns with random orientation, but well-defined geometry, in the high-density components of the prepared many-body state. Together with a time-resolved analysis, this supports the description of the system in terms of a correlated quantum state of collective excitations delocalized throughout the gas. Our experiment demonstrates the potential of Rydberg gases to realize exotic phases of matter, thereby laying the basis for quantum simulations of quantum magnets with long-range interactions.

6.
Nature ; 481(7382): 484-7, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22281597

RESUMO

In relativistic quantum field theory, information propagation is bounded by the speed of light. No such limit exists in the non-relativistic case, although in real physical systems, short-range interactions may be expected to restrict the propagation of information to finite velocities. The question of how fast correlations can spread in quantum many-body systems has been long studied. The existence of a maximal velocity, known as the Lieb-Robinson bound, has been shown theoretically to exist in several interacting many-body systems (for example, spins on a lattice)--such systems can be regarded as exhibiting an effective light cone that bounds the propagation speed of correlations. The existence of such a 'speed of light' has profound implications for condensed matter physics and quantum information, but has not been observed experimentally. Here we report the time-resolved detection of propagating correlations in an interacting quantum many-body system. By quenching a one-dimensional quantum gas in an optical lattice, we reveal how quasiparticle pairs transport correlations with a finite velocity across the system, resulting in an effective light cone for the quantum dynamics. Our results open perspectives for understanding the relaxation of closed quantum systems far from equilibrium, and for engineering the efficient quantum channels necessary for fast quantum computations.

7.
Nature ; 487(7408): 454-8, 2012 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-22837000

RESUMO

Spontaneous symmetry breaking plays a key role in our understanding of nature. In relativistic quantum field theory, a broken continuous symmetry leads to the emergence of two types of fundamental excitation: massless Nambu-Goldstone modes and a massive 'Higgs' amplitude mode. An excitation of Higgs type is of crucial importance in the standard model of elementary particle physics, and also appears as a fundamental collective mode in quantum many-body systems. Whether such a mode exists in low-dimensional systems as a resonance-like feature, or whether it becomes overdamped through coupling to Nambu-Goldstone modes, has been a subject of debate. Here we experimentally find and study a Higgs mode in a two-dimensional neutral superfluid close to a quantum phase transition to a Mott insulating phase. We unambiguously identify the mode by observing the expected reduction in frequency of the onset of spectral response when approaching the transition point. In this regime, our system is described by an effective relativistic field theory with a two-component quantum field, which constitutes a minimal model for spontaneous breaking of a continuous symmetry. Additionally, all microscopic parameters of our system are known from first principles and the resolution of our measurement allows us to detect excited states of the many-body system at the level of individual quasiparticles. This allows for an in-depth study of Higgs excitations that also addresses the consequences of the reduced dimensionality and confinement of the system. Our work constitutes a step towards exploring emergent relativistic models with ultracold atomic gases.

8.
Nature ; 471(7338): 319-24, 2011 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-21412333

RESUMO

Ultracold atoms in optical lattices provide a versatile tool with which to investigate fundamental properties of quantum many-body systems. In particular, the high degree of control of experimental parameters has allowed the study of many interesting phenomena, such as quantum phase transitions and quantum spin dynamics. Here we demonstrate how such control can be implemented at the most fundamental level of a single spin at a specific site of an optical lattice. Using a tightly focused laser beam together with a microwave field, we were able to flip the spin of individual atoms in a Mott insulator with sub-diffraction-limited resolution, well below the lattice spacing. The Mott insulator provided us with a large two-dimensional array of perfectly arranged atoms, in which we created arbitrary spin patterns by sequentially addressing selected lattice sites after freezing out the atom distribution. We directly monitored the tunnelling quantum dynamics of single atoms in the lattice prepared along a single line, and observed that our addressing scheme leaves the atoms in the motional ground state. The results should enable studies of entropy transport and the quantum dynamics of spin impurities, the implementation of novel cooling schemes, and the engineering of quantum many-body phases and various quantum information processing applications.

9.
Bioconjug Chem ; 27(7): 1606-13, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27304609

RESUMO

Although several approaches for making antibody-drug conjugates (ADC) have been developed, it has yet to be reported that an antibody binding peptide such as Z33 from protein A is utilized as the pivotal unit to generate the noncovalent-type ADC (NC-ADC). Herein we aim to establish a novel probe for NC-ADC by synthesizing the Z33-conjugated antitumor agent, plinabulin. Due to the different solubility of two components, including hydrophobic plinabulin and hydrophilic Z33, an innovative method with a solid-supported disulfide coupling reagent is required for the synthesis of the target compounds with prominent efficiency (29% isolated yield). We demonstrate that the synthesized hybrid exhibits a binding affinity against the anti-HER2 antibody (Herceptin) and the anti-CD71 antibody (6E1) (Kd = 46.6 ± 0.5 nM and 4.5 ± 0.56 µM, respectively) in the surface plasmon resonance (SPR) assay. In the cell-based assays, the hybrid provides a significant cytotoxicity in the presence of Herceptin against HER2 overexpressing SKBR-3 cells, but not against HER2 low-expressing MCF-7 cells. Further, it is noteworthy that the hybrid in combination with Herceptin induces cytotoxicity against Herceptin-resistant SKBR-3 (SKBR-3HR) cells. Similar results are obtained with the 6E1 antibody, suggesting that the synthesized hybrid can be widely applicable for NC-ADC using the antibody of interest. In summary, a series of evidence presented here strongly indicate that NC-ADCs have high potential for the next generation of antitumor agents.


Assuntos
Antineoplásicos/metabolismo , Dicetopiperazinas/metabolismo , Imunoconjugados/metabolismo , Imunoconjugados/farmacologia , Imunoglobulina G/metabolismo , Pró-Fármacos/metabolismo , Humanos , Imunoconjugados/química , Células MCF-7 , Solubilidade , Água/química
10.
Phys Rev Lett ; 115(3): 035302, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26230800

RESUMO

Entanglement is an essential property of quantum many-body systems. However, its local detection is challenging and was so far limited to spin degrees of freedom in ion chains. Here we measure entanglement between the spins of atoms located on two lattice sites in a one-dimensional Bose-Hubbard chain which features both local spin- and particle-number fluctuations. Starting with an initially localized spin impurity, we observe an outwards propagating entanglement wave and show quantitatively how entanglement in the spin sector rapidly decreases with increasing particle-number fluctuations in the chain.

11.
Phys Rev Lett ; 113(14): 147205, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25325657

RESUMO

We study experimentally the far-from-equilibrium dynamics in ferromagnetic Heisenberg quantum magnets realized with ultracold atoms in an optical lattice. After controlled imprinting of a spin spiral pattern with an adjustable wave vector, we measure the decay of the initial spin correlations through single-site resolved detection. On the experimentally accessible time scale of several exchange times, we find a profound dependence of the decay rate on the wave vector. In one-dimensional systems, we observe diffusionlike spin transport with a dimensionless diffusion coefficient of 0.22(1). We show how this behavior emerges from the microscopic properties of the closed quantum system. In contrast to the one-dimensional case, our transport measurements for two-dimensional Heisenberg systems indicate anomalous superdiffusion.

12.
Proc Natl Acad Sci U S A ; 107(6): 2568-73, 2010 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-20133793

RESUMO

The peritoneal cavity (PerC) is a unique compartment within which a variety of immune cells reside, and from which macrophages (MØ) are commonly drawn for functional studies. Here we define two MØ subsets that coexist in PerC in adult mice. One, provisionally called the large peritoneal MØ (LPM), contains approximately 90% of the PerC MØ in unstimulated animals but disappears rapidly from PerC following lipopolysaccharide (LPS) or thioglycolate stimulation. These cells express high levels of the canonical MØ surface markers, CD11b and F4/80. The second subset, referred to as small peritoneal MØ (SPM), expresses substantially lower levels of CD11b and F4/80 but expresses high levels of MHC-II, which is not expressed on LPM. SPM, which predominates in PerC after LPS or thioglycolate stimulation, does not derive from LPM. Instead, it derives from blood monocytes that rapidly enter the PerC after stimulation and differentiate to mature SPM within 2 to 4 d. Both subsets show clear phagocytic activity and both produce nitric oxide (NO) in response to LPS stimulation in vivo. However, their responses to LPS show key differences: in vitro, LPS stimulates LPM, but not SPM, to produce NO; in vivo, LPS stimulates both subsets to produce NO, albeit with different response patterns. These findings extend current models of MØ heterogeneity and shed new light on PerC MØ diversity, development, and function. Thus, they introduce a new context for interpreting (and reinterpreting) data from ex vivo studies with PerC MØ.


Assuntos
Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/imunologia , Cavidade Peritoneal/citologia , Animais , Antígenos de Diferenciação/metabolismo , Antígeno CD11b/metabolismo , Células Cultivadas , Escherichia coli/genética , Escherichia coli/imunologia , Escherichia coli/metabolismo , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Microscopia Confocal , Fagocitose/imunologia , Tioglicolatos/farmacologia
13.
Sci Rep ; 13(1): 4225, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918661

RESUMO

We previously generated fully human antibody-producing TC-mAb mice for obtaining potential therapeutic monoclonal antibodies (mAbs). In this study, we investigated 377 clones of fully human mAbs against a tumor antigen, epithelial cell adhesion molecule (EpCAM), to determine their antigen binding properties. We revealed that a wide variety of mAbs against EpCAM can be obtained from TC-mAb mice by the combination of epitope mapping analysis of mAbs to EpCAM and native conformational recognition analysis. Analysis of 72 mAbs reacting with the native form of EpCAM indicated that the EpCL region (amino acids 24-80) is more antigenic than the EpRE region (81-265), consistent with numerous previous studies. To evaluate the potential of mAbs against antibody-drug conjugates, mAbs were directly labeled with DM1, a maytansine derivative, using an affinity peptide-based chemical conjugation (CCAP) method. The cytotoxicity of the conjugates against a human colon cancer cell line could be clearly detected with high-affinity as well as low-affinity mAbs by the CCAP method, suggesting the advantage of this method. Thus, this study demonstrated that TC-mAb mice can provide a wide variety of antibodies and revealed an effective way of identifying candidates for fully human ADC therapeutics.


Assuntos
Neoplasias do Colo , Imunoconjugados , Humanos , Camundongos , Animais , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Molécula de Adesão da Célula Epitelial , Antígenos de Neoplasias , Neoplasias do Colo/patologia , Anticorpos Monoclonais
14.
Nat Med ; 29(6): 1448-1455, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37248302

RESUMO

Abnormal α-synuclein aggregation is a key pathological feature of a group of neurodegenerative diseases known as synucleinopathies, which include Parkinson's disease (PD), dementia with Lewy bodies and multiple system atrophy (MSA). The pathogenic ß-sheet seed conformation of α-synuclein is found in various tissues, suggesting potential as a biomarker, but few studies have been able to reliably detect these seeds in serum samples. In this study, we developed a modified assay system, called immunoprecipitation-based real-time quaking-induced conversion (IP/RT-QuIC), which enables the detection of pathogenic α-synuclein seeds in the serum of individuals with synucleinopathies. In our internal first and second cohorts, IP/RT-QuIC showed high diagnostic performance for differentiating PD versus controls (area under the curve (AUC): 0.96 (95% confidence interval (CI) 0.95-0.99)/AUC: 0.93 (95% CI 0.84-1.00)) and MSA versus controls (AUC: 0.64 (95% CI 0.49-0.79)/AUC: 0.73 (95% CI 0.49-0.98)). IP/RT-QuIC also showed high diagnostic performance in differentiating individuals with PD (AUC: 0.86 (95% CI 0.74-0.99)) and MSA (AUC: 0.80 (95% CI 0.65-0.97)) from controls in a blinded external cohort. Notably, amplified seeds maintained disease-specific properties, allowing the differentiation of samples from individuals with PD versus MSA. In summary, here we present a novel platform that may allow the detection of individuals with synucleinopathies using serum samples.


Assuntos
Doença por Corpos de Lewy , Atrofia de Múltiplos Sistemas , Doença de Parkinson , Sinucleinopatias , Humanos , alfa-Sinucleína , Sinucleinopatias/patologia , Doença de Parkinson/diagnóstico , Atrofia de Múltiplos Sistemas/diagnóstico , Biomarcadores , Doença por Corpos de Lewy/diagnóstico
15.
J Neurosci ; 31(11): 3981-9, 2011 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-21411641

RESUMO

Injury and inflammation are potent regulators of adult neurogenesis. As the complement system forms a key immune pathway that may also exert critical functions in neural development and neurodegeneration, we asked whether complement receptors regulate neurogenesis. We discovered that complement receptor 2 (CR2), classically known as a coreceptor of the B-lymphocyte antigen receptor, is expressed in adult neural progenitor cells (NPCs) of the dentate gyrus. Two of its ligands, C3d and interferon-α (IFN-α), inhibited proliferation of wild-type NPCs but not NPCs derived from mice lacking Cr2 (Cr2(-/-)), indicating functional Cr2 expression. Young and old Cr2(-/-) mice exhibited prominent increases in basal neurogenesis compared with wild-type littermates, whereas intracerebral injection of C3d resulted in fewer proliferating neuroblasts in wild-type than in Cr2(-/-) mice. We conclude that Cr2 regulates hippocampal neurogenesis and propose that increased C3d and IFN-α production associated with brain injury or viral infections may inhibit neurogenesis.


Assuntos
Hipocampo/fisiologia , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Receptores de Complemento 3d/metabolismo , Análise de Variância , Animais , Proliferação de Células , Células Cultivadas , Complemento C3d/metabolismo , Imuno-Histoquímica , Interferon-alfa/metabolismo , Camundongos , Camundongos Knockout , Receptores de Complemento 3d/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Phys Rev Lett ; 106(21): 215301, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21699309

RESUMO

We experimentally demonstrate coherent light scattering from an atomic Mott insulator in a two-dimensional lattice. The far-field diffraction pattern of small clouds of a few hundred atoms was imaged while simultaneously laser cooling the atoms with the probe beams. We describe the position of the diffraction peaks and the scaling of the peak parameters by a simple analytic model. In contrast to Bragg scattering, scattering from a single plane yields diffraction peaks for any incidence angle. We demonstrate the feasibility of detecting spin correlations via light scattering by artificially creating a one-dimensional antiferromagnetic order as a density wave and observing the appearance of additional diffraction peaks.

17.
Nat Cell Biol ; 4(2): 111-6, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11802161

RESUMO

In eukaryotes, entry into M-phase of the cell cycle is induced by activation of cyclin B-Cdc2 kinase. At G2-phase, the activity of its inactivator, a member of the Wee1 family of protein kinases, exceeds that of its activator, Cdc25C phosphatase. However, at M-phase entry the situation is reversed, such that the activity of Cdc25C exceeds that of the Wee1 family. The mechanism of this reversal is unclear. Here we show that in oocytes from the starfish Asterina pectinifera, the kinase Akt (or protein kinase B (PKB)) phosphorylates and downregulates Myt1, a member of the Wee1 family. This switches the balance of regulator activities and causes the initial activation of cyclin B-Cdc2 at the meiotic G2/M-phase transition. These findings identify Myt1 as a new target of Akt, and demonstrate that Akt functions as an M-phase initiator.


Assuntos
Meiose/fisiologia , Oócitos/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Proteína Quinase CDC2/metabolismo , Ciclina B/metabolismo , Ativação Enzimática , Modelos Biológicos , Dados de Sequência Molecular , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-akt , Alinhamento de Sequência , Estrelas-do-Mar/fisiologia
18.
Sci Rep ; 11(1): 4625, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633189

RESUMO

Development of monoclonal antibody is critical for targeted drug delivery because its characteristics determine improved therapeutic efficacy and reduced side-effect. Antibody therapeutics target surface molecules; hence, internalization is desired for drug delivery. As an antibody-drug conjugate, a critical parameter is drug-to-antibody ratio wherein the quantity of drugs attached to the antibody influences the antibody structure, stability, and efficacy. Here, we established a cell-based immunotoxin screening system to facilitate the isolation of functional antibodies with internalization capacities, and discovered an anti-human CD71 monoclonal antibody. To overcome the limitation of drug-to-antibody ratio, we employed the encapsulation capacity of liposome, and developed anti-CD71 antibody-conjugated liposome that demonstrated antigen-antibody dependent cellular uptake when its synthesis was optimized. Furthermore, anti-CD71 antibody-conjugated liposome encapsulating doxorubicin demonstrated antigen-antibody dependent cytotoxicity. In summary, this study demonstrates the powerful pipeline to discover novel functional antibodies, and the optimal method to synthesize immunoliposomes. This versatile technology offers a rapid and direct approach to generate antibodies suitable for drug delivery modalities.


Assuntos
Anticorpos/imunologia , Lipossomos , Animais , Complexo Antígeno-Anticorpo , Antígenos CD/imunologia , Linhagem Celular Tumoral , Doxorrubicina/química , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Receptores da Transferrina/imunologia
19.
Methods Mol Biol ; 2322: 3-16, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34043187

RESUMO

Synucleinopathies are neurodegenerative diseases that are associated with the misfolding and aggregation of α-synuclein (αSyn). They include Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. In each disease, it has been proposed that aggregates of αSyn represent different conformational strains of αSyn, leading to self-propagation and spreading from cell to cell. It has been considered that αSyn aggregates grow by seeded polymerization mechanisms. Previously, the mechanism of seed conversion in prion protein aggregation has been exploited by real-time quaking-induced conversion (RT-QuIC) assay. It was further refined by incorporating the fluorescent dye thioflavin-T, which enabled the real-time monitoring of kinetic changes with a highly sensitive detection of seed aggregates present at an extremely low level. In an application for diagnostics, it has been reported that αSyn RT-QuIC exhibits specificity between 82% and 100%, while its sensitivity varies between 70% and 100%, on the basis of a study in which this assay was performed at multiple different laboratories. Furthermore, it has been suggested that the αSyn RT-QuIC method can be applied to study the biochemical characteristics of different αSyn strains among synucleinopathies. In this article, we describe the detailed protocols for αSyn RT-QuIC assays.


Assuntos
Sinucleinopatias/metabolismo , alfa-Sinucleína/metabolismo , Benzotiazóis/metabolismo , Bioensaio/métodos , Encéfalo/metabolismo , Humanos , Cinética , Proteínas Priônicas/metabolismo , Agregados Proteicos/fisiologia
20.
Sci Rep ; 11(1): 6312, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737554

RESUMO

The prognosis of the liver transplant patients was frequently deteriorated by ischemia and reperfusion injury (IRI) in the liver. Infiltration of inflammatory cells is reported to play critical roles in the pathogenesis of hepatic IRI. Although T lymphocytes, neutrophils and monocytes infiltrated into the liver underwent IRI, we found that neutrophil depletion significantly attenuated the injury and serum liver enzyme levels in a murine model. Interestingly, the expression of CD321/JAM-A/F11R, one of essential molecules for transmigration of circulating leukocytes into inflammatory tissues, was significantly augmented on hepatic sinusoid endothelium at 1 h after ischemia and maintained until 45 min after reperfusion. The intraportal administration of anti-CD321 monoclonal antibody (90G4) significantly inhibited the leukocytes infiltration after reperfusion and diminished the damage responses by hepatic IRI (serum liver enzymes, inflammatory cytokines and hepatocyte cell death). Taken together, presented results demonstrated that blockade of CD321 by 90G4 antibody significantly attenuated hepatic IRI accompanied with substantial inhibition of leukocytes infiltration, particularly inhibition of neutrophil infiltration in the early phase of reperfusion. Thus, our work offers a potent therapeutic target, CD321, for preventing liver IRI.


Assuntos
Moléculas de Adesão Celular/antagonistas & inibidores , Transplante de Fígado/efeitos adversos , Substâncias Protetoras/farmacologia , Receptores de Superfície Celular/antagonistas & inibidores , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Anticorpos Anti-Idiotípicos/farmacologia , Anticorpos Monoclonais/farmacologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/imunologia , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacos , Fígado/lesões , Fígado/patologia , Testes de Função Hepática , Camundongos , Infiltração de Neutrófilos/efeitos dos fármacos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/imunologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA