RESUMO
development of antibiotics, antineoplastics, and therapeutics for other diseases. Natural products are unique among all other small molecules in that they are produced by dedicated enzymatic assembly lines that are the protein products of biosynthetic gene clusters. As the products of chiral macromolecules, natural products have distinct three-dimensional shapes and stereochemistry is often encoded in their structures through the presence of stereocenters, or in the case of molecules that lack a stereocenter, the presence of an axis or plane of chirality. In the latter forms of chirality, if the barrier to rotation about the chiral axis or chiral plane is sufficiently high, stable conformers may exist allowing for isolation of discrete conformers, also known as atropisomers. Importantly, the diverse functions and biological activities of natural products are contingent upon their structures, stereochemistry and molecular shape. With continued innovation in methods for natural products discovery, synthetic chemistry, and analytical and computational tools, new insights into atropisomerism in natural products and related scaffolds are being made. As molecular complexity increases, more than one form of stereoisomerism may exist in a single compound (for example, point chirality, chiral axes, and chiral planes), sometimes creating atypical or noncanonical atropisomers, a term used to distinguish physically noninterconvertable atropisomers from typical atropisomers.Here we provide an account of the discovery and unusual structural and stereochemical features of the chrysophaentins, algal derived inhibitors of the bacterial cytoskeletal protein FtsZ and its associated protein partners. Eleven members of the chrysophaentin family have been discovered to date; seven of these are macrocyclic bis-bibenzyl ethers wherein the site of the ether linkage yields either a symmetrical or asymmetrical macrocyclic ring system. The asymmetrical ring system is highly strained and corresponds to the compounds having the most potent antimicrobial activity among the family. We review the structure elucidation and NMR properties that indicate restricted rotation between axes of two biaryl ethers, and the plane represented by the substituted 2-Z-butene bridge common to all of the macrocycles. Computational studies that corroborate high barriers to rotation about one representative plane, on the order of 20+ kcal/mol are presented. These barriers to rotation fix the conformation of the macrocycle into a bowl-like structure and suggest that an atropisomer should exist. Experimental evidence for atropisomerism is presented, consistent with computational predictions. These properties are discussed in the context of the total synthesis of 9-dechlorochrysophaenin A and its ring C isomers. Last, we discuss the implications for the presence of enantiomers in the biological activity and macrocyclization of the natural product.
Assuntos
Produtos Biológicos , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Estereoisomerismo , ÉteresRESUMO
Small molecule targeting of RNA has emerged as a new frontier in medicinal chemistry, but compared to the protein targeting literature our understanding of chemical matter that binds to RNA is limited. In this study, we reported Repository Of BInders to Nucleic acids (ROBIN), a new library of nucleic acid binders identified by small molecule microarray (SMM) screening. The complete results of 36 individual nucleic acid SMM screens against a library of 24 572 small molecules were reported (including a total of 1 627 072 interactions assayed). A set of 2 003 RNA-binding small molecules was identified, representing the largest fully public, experimentally derived library of its kind to date. Machine learning was used to develop highly predictive and interpretable models to characterize RNA-binding molecules. This work demonstrates that machine learning algorithms applied to experimentally derived sets of RNA binders are a powerful method to inform RNA-targeted chemical space.
Assuntos
Aprendizado de Máquina , RNA , RNA/química , Biblioteca Gênica , Bioensaio , Análise em MicrossériesRESUMO
Chrysophaentin A is an antimicrobial natural product isolated from the marine alga C. taylori in milligram quantity. Structurally, chrysophaentin A features a macrocyclic biaryl ether core incorporating two trisubstituted chloroalkenes at its periphery. A concise synthesis of iso- and 9-dechlorochrysophaentin A enabled by a Z-selective ring-closing metathesis (RCM) cyclization followed by an oxygen to carbon ring contraction is described. Fluorescent microscopy studies revealed 9-dechlorochrysophaentins leads to inhibition of bacterial cell wall biosynthesis by disassembly of key divisome proteins, the cornerstone to bacterial cell wall biosynthesis and division.
Assuntos
Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Produtos Biológicos/farmacologia , Parede Celular/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Parede Celular/metabolismo , Eucariotos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Fenótipo , EstereoisomerismoRESUMO
The challenge of targeting RNA with small molecules necessitates a better understanding of RNA-ligand interaction mechanisms. However, the dynamic nature of nucleic acids, their ligand-induced stabilization, and how conformational changes influence gene expression pose significant difficulties for experimental investigation. This work employs a combination of computational and experimental methods to address these challenges. By integrating structure-informed design, crystallography, and machine learning-augmented all-atom molecular dynamics simulations (MD) we synthesized, biophysically and biochemically characterized, and studied the dissociation of a library of small molecule activators of the ZTP riboswitch, a ligand-binding RNA motif that regulates bacterial gene expression. We uncovered key interaction mechanisms, revealing valuable insights into the role of ligand binding kinetics on riboswitch activation. Further, we established that ligand on-rates determine activation potency as opposed to binding affinity and elucidated RNA structural differences, which provide mechanistic insights into the interplay of RNA structure on riboswitch activation.
RESUMO
Neuroblastoma RAS (NRAS) is an oncogene that is deregulated and highly mutated in cancers including melanomas and acute myeloid leukemias. The 5' untranslated region (UTR) (5' UTR) of the NRAS mRNA contains a G-quadruplex (G4) that regulates translation. Here we report a novel class of small molecule that binds to the G4 structure located in the 5' UTR of the NRAS mRNA. We used a small molecule microarray screen to identify molecules that selectively bind to the NRAS-G4 with submicromolar affinity. One compound inhibits the translation of NRAS in vitro but showed only moderate effects on the NRAS levels in cellulo. Rapid Amplification of cDNA Ends and RT-PCR analysis revealed that the predominant NRAS transcript does not possess the G4 structure. Thus, although NRAS transcripts lack a G4 in many cell lines the concept of targeting folded regions within 5' UTRs to control translation remains a highly attractive strategy.
Assuntos
Quadruplex G , Neuroblastoma , Humanos , Regiões 5' não Traduzidas/genética , RNA Mensageiro/genética , Linhagem Celular , Proteínas de Membrana/genética , GTP Fosfo-Hidrolases/genéticaRESUMO
BACKGROUND: Recurrent pharyngotonsillitis due to Streptococcus pyogenes develops regardless of whether infecting strains are resistant or susceptible to first-line antimicrobials. Causation for recurrent infection is associated with the use of first-line antimicrobials that fail to penetrate deep tissue and host cell membranes, enabling intracellular S. pyogenes to survive throughout repeated rounds of antimicrobial therapy. OBJECTIVE: To determine whether simvastatin, a therapeutic approved for use in the treatment of hypercholesterolemia, and ML141, a first-in-class small molecule inhibitor with specificity for human CDC42, limit host cell invasion by S. pyogenes. METHODS: Assays to assess host cell invasion, bactericidal activity, host cell viability, actin depolymerization, and fibronectin binding were performed using the RAW 267.4 macrophage cell line and Human Umbilical Vein Endothelial Cells (HUVEC) infected with S. pyogenes (90-226) and treated with simvastatin, ML141, structural analogs of ML141, or vehicle control. RESULTS: Simvastatin and ML141 decreased intracellular infection by S. pyogenes in a dose-dependent manner. Inhibition by simvastatin persisted following 1 h washout whereas inhibition by ML141 was reversed. During S. pyogenes infection, actin stress fibers depolymerized in vehicle control treated cells, yet remained intact in simvastatin and in ML141 treated cells. Consistent with the previous characterization of ML141, simvastatin decreased host cell binding to fibronectin. Structural analogs of ML141, designated as the RSM series, decreased intracellular infection through non-cytotoxic, nonbactericidal mechanisms. CONCLUSION: Our findings demonstrate the potential of repurposing simvastatin and of developing CDC42-targeted therapeutics for eradicating intracellular S. pyogenes infection to break the cycle of recurrent infection through a host-directed approach.
Assuntos
Antibacterianos/farmacologia , Pirazóis/farmacologia , Sinvastatina/farmacologia , Infecções Estreptocócicas/tratamento farmacológico , Streptococcus pyogenes/efeitos dos fármacos , Sulfonamidas/farmacologia , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Animais , Antibacterianos/química , Células Cultivadas , Fibronectinas/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/microbiologia , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Estrutura Molecular , Pirazóis/química , Células RAW 264.7 , Sinvastatina/química , Sulfonamidas/químicaRESUMO
Staphylococcus aureus is a leading causative agent in sepsis, endocarditis, and pneumonia. An emerging concept is that prognosis worsens when the infecting S. aureus strain has the capacity to not only colonize tissue as an extracellular pathogen, but to invade host cells and establish intracellular bacterial populations. In previous work, we identified host CDC42 as a central regulator of endothelial cell invasion by S. aureus. In the current work, we report that ML 141, a first-in-class CDC42 inhibitor, decreases invasion and resultant pathogenesis in a dose-dependent and reversible manner. Inhibition was found to be due in part to decreased remodeling of actin that potentially drives endocytic uptake of bacteria/fibronectin/integrin complexes. ML 141 decreased binding to fibronectin at these complexes, thereby limiting a key pathogenic mechanism used by S. aureus to invade. Structural analogs of ML 141 were synthesized (designated as the RSM series) and a subset identified that inhibit invasion through non-cytotoxic and non-bactericidal mechanisms. Our results support the development of adjunctive therapeutics targeting host CDC42 for mitigating invasive infection at the level of the host.