Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nature ; 620(7974): 634-642, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37438525

RESUMO

The physiological functions of mast cells remain largely an enigma. In the context of barrier damage, mast cells are integrated in type 2 immunity and, together with immunoglobulin E (IgE), promote allergic diseases. Allergic symptoms may, however, facilitate expulsion of allergens, toxins and parasites and trigger future antigen avoidance1-3. Here, we show that antigen-specific avoidance behaviour in inbred mice4,5 is critically dependent on mast cells; hence, we identify the immunological sensor cell linking antigen recognition to avoidance behaviour. Avoidance prevented antigen-driven adaptive, innate and mucosal immune activation and inflammation in the stomach and small intestine. Avoidance was IgE dependent, promoted by Th2 cytokines in the immunization phase and by IgE in the execution phase. Mucosal mast cells lining the stomach and small intestine rapidly sensed antigen ingestion. We interrogated potential signalling routes between mast cells and the brain using mutant mice, pharmacological inhibition, neural activity recordings and vagotomy. Inhibition of leukotriene synthesis impaired avoidance, but overall no single pathway interruption completely abrogated avoidance, indicating complex regulation. Collectively, the stage for antigen avoidance is set when adaptive immunity equips mast cells with IgE as a telltale of past immune responses. On subsequent antigen ingestion, mast cells signal termination of antigen intake. Prevention of immunopathology-causing, continuous and futile responses against per se innocuous antigens or of repeated ingestion of toxins through mast-cell-mediated antigen-avoidance behaviour may be an important arm of immunity.


Assuntos
Alérgenos , Aprendizagem da Esquiva , Hipersensibilidade , Mastócitos , Animais , Camundongos , Alérgenos/imunologia , Aprendizagem da Esquiva/fisiologia , Hipersensibilidade/imunologia , Imunoglobulina E/imunologia , Mastócitos/imunologia , Estômago/imunologia , Vagotomia , Imunidade Inata/imunologia , Imunidade nas Mucosas/imunologia , Células Th2/imunologia , Citocinas/imunologia , Leucotrienos/biossíntese , Leucotrienos/imunologia , Intestino Delgado/imunologia
2.
Nature ; 578(7794): 284-289, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025031

RESUMO

Neural control of the function of visceral organs is essential for homeostasis and health. Intestinal peristalsis is critical for digestive physiology and host defence, and is often dysregulated in gastrointestinal disorders1. Luminal factors, such as diet and microbiota, regulate neurogenic programs of gut motility2-5, but the underlying molecular mechanisms remain unclear. Here we show that the transcription factor aryl hydrocarbon receptor (AHR) functions as a biosensor in intestinal neural circuits, linking their functional output to the microbial environment of the gut lumen. Using nuclear RNA sequencing of mouse enteric neurons that represent distinct intestinal segments and microbiota states, we demonstrate that the intrinsic neural networks of the colon exhibit unique transcriptional profiles that are controlled by the combined effects of host genetic programs and microbial colonization. Microbiota-induced expression of AHR in neurons of the distal gastrointestinal tract enables these neurons to respond to the luminal environment and to induce expression of neuron-specific effector mechanisms. Neuron-specific deletion of Ahr, or constitutive overexpression of its negative feedback regulator CYP1A1, results in reduced peristaltic activity of the colon, similar to that observed in microbiota-depleted mice. Finally, expression of Ahr in the enteric neurons of mice treated with antibiotics partially restores intestinal motility. Together, our experiments identify AHR signalling in enteric neurons as a regulatory node that integrates the luminal environment with the physiological output of intestinal neural circuits to maintain gut homeostasis and health.


Assuntos
Microbioma Gastrointestinal/fisiologia , Intestinos/fisiologia , Neurônios/fisiologia , Peristaltismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Feminino , Vida Livre de Germes , Intestinos/inervação , Ligantes , Masculino , Camundongos , Vias Neurais , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Transcriptoma/genética
3.
Development ; 148(3)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558316

RESUMO

During embryonic development, the gut is innervated by intrinsic (enteric) and extrinsic nerves. Focusing on mammalian ENS development, in this Review we highlight how important the different compartments of this innervation are to assure proper gut function. We specifically address the three-dimensional architecture of the innervation, paying special attention to the differences in development along the longitudinal and circumferential axes of the gut. We review recent information about the formation of both intrinsic innervation, which is fairly well-known, as well as the establishment of the extrinsic innervation, which, despite its importance in gut-brain signaling, has received much less attention. We further discuss how external microbial and nutritional cues or neuroimmune interactions may influence development of gut innervation. Finally, we provide summary tables, describing the location and function of several well-known molecules, along with some newer factors that have more recently been implicated in the development of gut innervation.


Assuntos
Desenvolvimento Embrionário/fisiologia , Sistema Nervoso Entérico/embriologia , Sistema Nervoso Entérico/crescimento & desenvolvimento , Trato Gastrointestinal/inervação , Animais , Encéfalo/fisiologia , Humanos , Neurônios/fisiologia , Organogênese/fisiologia , Transdução de Sinais
4.
Adv Exp Med Biol ; 1383: 71-79, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36587147

RESUMO

The gastrointestinal tract operates in a highly dynamic environment. The gut is typically exposed to continually changing and highly convoluted luminal compositions comprising not only ingested content but also a multitude of resident microbes and microbial factors. It is therefore critical that the gut is capable of distinguishing between nutritious components from noxious substances. This is facilitated by specialized cellular sensory machinery that are in place in the intestinal epithelium and the ENS. However, the specific chemosensory processes and enteric neuronal pathways that enable the gut to discern and respond appropriately to different chemicals remain unclear. A major hurdle in studying the neural processing of luminal information has been the complex spatial organization of the mucosal structures and their innervation along the radial axis. Much of our current knowledge of enteric neuronal responses to luminal stimuli stems from studies that used semi-dissected guinea pig small intestine preparations with the mucosa and submucosa removed in one-half in order to record electrical activity from exposed myenteric neurons or in the circular muscle. Building on this, we ultimately strive to work towards integrated systems with all the gut layers intact. With advanced microscopy techniques including multiphoton intravital imaging, together with transgenic technologies utilizing cell-type specific activity-dependent reporters, we stand in good stead for studying the ENS in more intact preparations and even in live animals. In this chapter, we highlight recent contributions to the knowledge of sensory gut innervation by the developing and mature ENS. We also revisit established work examining the functional connectivity between the myenteric and submucosal plexus, and discuss the methodologies that can help advance our understanding of the enteric circuitry and signaling along the mucosa-serosa axis.


Assuntos
Sistema Nervoso Entérico , Animais , Cobaias , Sistema Nervoso Entérico/metabolismo , Trato Gastrointestinal/inervação , Intestino Delgado , Neurônios/metabolismo , Transdução de Sinais
5.
Cell Mol Life Sci ; 77(22): 4505-4522, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32424438

RESUMO

The enteric nervous system (ENS) is an extensive network comprising millions of neurons and glial cells contained within the wall of the gastrointestinal tract. The major functions of the ENS that have been most studied include the regulation of local gut motility, secretion, and blood flow. Other areas that have been gaining increased attention include its interaction with the immune system, with the gut microbiota and its involvement in the gut-brain axis, and neuro-epithelial interactions. Thus, the enteric circuitry plays a central role in intestinal homeostasis, and this becomes particularly evident when there are faults in its wiring such as in neurodevelopmental or neurodegenerative disorders. In this review, we first focus on the current knowledge on the cellular composition of enteric circuits. We then further discuss how enteric circuits detect and process external information, how these signals may be modulated by physiological and pathophysiological factors, and finally, how outputs are generated for integrated gut function.


Assuntos
Sistema Nervoso Entérico/fisiologia , Transdução de Sinais/fisiologia , Animais , Encéfalo/imunologia , Encéfalo/fisiologia , Sistema Nervoso Entérico/imunologia , Microbioma Gastrointestinal/imunologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/fisiologia , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/fisiologia , Neuroglia/imunologia , Neuroglia/fisiologia , Neurônios/imunologia , Neurônios/fisiologia , Transdução de Sinais/imunologia
6.
Am J Physiol Gastrointest Liver Physiol ; 318(1): G53-G65, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31682159

RESUMO

Detection of nutritional and noxious food components in the gut is a crucial component of gastrointestinal function. Contents in the gut lumen interact with enteroendocrine cells dispersed throughout the gut epithelium. Enteroendocrine cells release many different hormones, neuropeptides, and neurotransmitters that communicate either directly or indirectly with the central nervous system and the enteric nervous system, a network of neurons and glia located within the gut wall. Several populations of enteric neurons extend processes that innervate the gastrointestinal lamina propria; however, how these processes develop and begin to transmit information from the mucosa is not fully understood. In this study, we found that Tuj1-immunoreactive neurites begin to project out of the myenteric plexus at embryonic day (E)13.5 in the mouse small intestine, even before the formation of villi. Using live calcium imaging, we discovered that neurites were capable of transmitting electrical information from stimulated villi to the plexus by E15.5. In unpeeled gut preparations where all layers were left intact, we also mimicked the basolateral release of 5-HT from enteroendocrine cells, which triggered responses in myenteric cell bodies at postnatal day (P)0. Altogether, our results show that enteric neurons extend neurites out of the myenteric plexus early during mouse enteric nervous system development, innervating the gastrointestinal mucosa, even before villus formation in mice of either sex. Neurites are already able to conduct electrical information at E15.5, and responses to 5-HT develop postnatally.NEW & NOTEWORTHY How enteric neurons project into the gut mucosa and begin to communicate with the epithelium during development is not known. Our study shows that enteric neurites project into the lamina propria as early as E13.5 in the mouse, before development of the submucous plexus and before formation of intestinal villi. These neurites are capable of transmitting electrical signals back to their cell bodies by E15.5 and respond to serotonin applied to neurite terminals by birth.


Assuntos
Mucosa Intestinal/inervação , Intestino Delgado/inervação , Microvilosidades/fisiologia , Plexo Mientérico/crescimento & desenvolvimento , Neuritos/fisiologia , Neurogênese , Animais , Células Enteroendócrinas/metabolismo , Células Enteroendócrinas/fisiologia , Potenciais Evocados , Feminino , Idade Gestacional , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plexo Mientérico/efeitos dos fármacos , Plexo Mientérico/metabolismo , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Serotonina/farmacologia , Tubulina (Proteína)/metabolismo
7.
Glia ; 67(6): 1167-1178, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30730592

RESUMO

Coordination of gastrointestinal function relies on joint efforts of enteric neurons and glia, whose crosstalk is vital for the integration of their activity. To investigate the signaling mechanisms and to delineate the spatial aspects of enteric neuron-to-glia communication within enteric ganglia we developed a method to stimulate single enteric neurons while monitoring the activity of neighboring enteric glial cells. We combined cytosolic calcium uncaging of individual enteric neurons with calcium imaging of enteric glial cells expressing a genetically encoded calcium indicator and demonstrate that enteric neurons signal to enteric glial cells through pannexins using paracrine purinergic pathways. Sparse labeling of enteric neurons and high-resolution analysis of the structural relation between neuronal cell bodies, varicose release sites and enteric glia uncovered that this form of neuron-to-glia communication is contained between the cell body of an enteric neuron and its surrounding enteric glial cells. Our results reveal the spatial and functional foundation of neuro-glia units as an operational cellular assembly in the enteric nervous system.


Assuntos
Comunicação Celular/fisiologia , Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Sistema Nervoso Entérico/química , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroglia/química , Neurônios/química
9.
Am J Physiol Gastrointest Liver Physiol ; 306(9): G748-58, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24578344

RESUMO

In the gastrointestinal tract, vasoactive intestinal peptide (VIP) is found exclusively within neurons. VIP regulates intestinal motility via neurally mediated and direct actions on smooth muscle and secretion by a direct mucosal action, and via actions on submucosal neurons. VIP acts via VPAC1 and VPAC2 receptors; however, the subtype involved in its neural actions is unclear. The neural roles of VIP and VPAC1 receptors (VPAC1R) were investigated in intestinal motility and secretion in guinea pig jejunum. Expression of VIP receptors across the jejunal layers was examined using RT-PCR. Submucosal and myenteric neurons expressing VIP receptor subtype VPAC1 and/or various neurochemical markers were identified immunohistochemically. Isotonic muscle contraction was measured in longitudinal muscle-myenteric plexus preparations. Electrogenic secretion across mucosa-submucosa preparations was measured in Ussing chambers by monitoring short-circuit current. Calretinin(+) excitatory longitudinal muscle motor neurons expressed VPAC1R. Most cholinergic submucosal neurons, notably NPY(+) secretomotor neurons, expressed VPAC1R. VIP (100 nM) induced longitudinal muscle contraction that was inhibited by TTX (1 µM), PG97-269 (VPAC1 antagonist; 1 µM), and hyoscine (10 µM), but not by hexamethonium (200 µM). VIP (50 nM)-evoked secretion was depressed by hyoscine or PG97-269 and involved a small TTX-sensitive component. PG97-269 and TTX combined did not further depress the VIP response observed in the presence of PG97-269 alone. We conclude that VIP stimulates ACh-mediated longitudinal muscle contraction via VPAC1R on cholinergic motor neurons. VIP induces Cl(-) secretion directly via epithelial VPAC1R and indirectly via VPAC1R on cholinergic secretomotor neurons. No evidence was obtained for involvement of other neural VIP receptors.


Assuntos
Neurônios Colinérgicos/metabolismo , Motilidade Gastrointestinal , Secreções Intestinais/metabolismo , Jejuno/inervação , Jejuno/metabolismo , Contração Muscular , Músculo Liso/inervação , Músculo Liso/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Acetilcolina/metabolismo , Animais , Calbindina 2/metabolismo , Cloretos/metabolismo , Neurônios Colinérgicos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Motilidade Gastrointestinal/efeitos dos fármacos , Cobaias , Mucosa Intestinal/inervação , Mucosa Intestinal/metabolismo , Jejuno/efeitos dos fármacos , Masculino , Potenciais da Membrana , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Neuropeptídeo Y/metabolismo , Neurotransmissores/farmacologia , RNA Mensageiro/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/efeitos dos fármacos , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/genética , Transdução de Sinais , Peptídeo Intestinal Vasoativo/metabolismo
10.
Neurogastroenterol Motil ; 33(12): e14186, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34121274

RESUMO

BACKGROUND: Gastrointestinal (GI) function is critically dependent on the control of the enteric nervous system (ENS), which is situated within the gut wall and organized into two ganglionated nerve plexuses: the submucosal and myenteric plexus. The ENS is optimally positioned and together with the intestinal epithelium, is well-equipped to monitor the luminal contents such as microbial metabolites and to coordinate appropriate responses accordingly. Despite the heightened interest in the gut microbiota and its influence on intestinal physiology and pathophysiology, how they interact with the host ENS remains unclear. METHODS: Using full-thickness proximal colon preparations from transgenic Villin-CreERT2;R26R-GCaMP3 and Wnt1-Cre;R26R-GCaMP3 mice, which express a fluorescent Ca2+ indicator in their intestinal epithelium or in their ENS, respectively, we examined the effects of key luminal microbial metabolites (SCFAs and 5-HT) on the mucosa and underlying enteric neurons. KEY RESULTS: We show that the SCFAs acetate, propionate, and butyrate, as well as 5-HT can, to varying extents, acutely elicit epithelial and neuronal Ca2+ responses. Furthermore, SCFAs exert differential effects on submucosal and myenteric neurons. Additionally, we found that submucosal ganglia are predominantly aligned along the striations of the transverse mucosal folds in the proximal colon. CONCLUSIONS & INFERENCES: Taken together, our study demonstrates that different microbial metabolites, including SCFAs and 5-HT, can acutely stimulate Ca2+ signaling in the mucosal epithelium and in enteric neurons.


Assuntos
Colo/efeitos dos fármacos , Ácidos Graxos Voláteis/farmacologia , Plexo Mientérico/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Serotonina/farmacologia , Animais , Cálcio/metabolismo , Colo/inervação , Colo/metabolismo , Feminino , Masculino , Camundongos , Plexo Mientérico/metabolismo , Plexo Mientérico/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia
11.
Front Physiol ; 9: 97, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29487540

RESUMO

γ-Aminobutyric Acid (GABA) and its receptors, GABAA,B,C, are expressed in several locations along the gastrointestinal tract. Nevertheless, a role for GABA in enteric synaptic transmission remains elusive. In this study, we characterized the expression and function of GABA in the myenteric plexus of the mouse ileum. About 8% of all myenteric neurons were found to be GABA-immunoreactive (GABA+) including some Calretinin+ and some neuronal nitric oxide synthase (nNOS+) neurons. We used Wnt1-Cre;R26R-GCaMP3 mice, which express a genetically encoded fluorescent calcium indicator in all enteric neurons and glia. Exogenous GABA increased the intracellular calcium concentration, [Ca2+]i of some myenteric neurons including many that did not express GABA or nNOS (the majority), some GABA+, Calretinin+ or Neurofilament-M (NFM)+ but rarely nNOS+ neurons. GABA+ terminals contacted a significantly larger proportion of the cell body surface area of Calretinin+ neurons than of nNOS+ neurons. Numbers of neurons with GABA-induced [Ca2+]i transients were reduced by GABAA,B,C and nicotinic receptor blockade. Electrical stimulation of interganglionic fiber tracts was used to examine possible effects of endogenous GABA release. [Ca2+]i transients evoked by single pulses were unaffected by specific antagonists for each of the 3 GABA receptor subtypes. [Ca2+]i transients evoked by 20 pulse trains were significantly amplified by GABAC receptor blockade. These data suggest that GABAA and GABAB receptors are not involved in synaptic transmission, but suggest a novel role for GABAC receptors in modulating slow synaptic transmission, as indicated by changes in [Ca2+]i transients, within the ENS.

12.
Front Physiol ; 9: 260, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29618987

RESUMO

Cholera-induced hypersecretion causes dehydration and death if untreated. Cholera toxin (CT) partly acts via the enteric nervous system (ENS) and induces long-lasting changes to enteric neuronal excitability following initial exposure, but the specific circuitry involved remains unclear. We examined this by first incubating CT or saline (control) in mouse ileal loops in vivo for 3.5 h and then assessed neuronal excitability in vitro using Ca2+ imaging and immunolabeling for the activity-dependent markers cFos and pCREB. Mice from a C57BL6 background, including Wnt1-Cre;R26R-GCaMP3 mice which express the fluorescent Ca2+ indicator GCaMP3 in its ENS, were used. Ca2+-imaging using this mouse model is a robust, high-throughput method which allowed us to examine the activity of numerous enteric neurons simultaneously and post-hoc immunohistochemistry enabled the neurochemical identification of the active neurons. Together, this provided novel insight into the CT-affected circuitry that was previously impossible to attain at such an accelerated pace. Ussing chamber measurements of electrogenic ion secretion showed that CT-treated preparations had higher basal secretion than controls. Recordings of Ca2+ activity from the submucous plexus showed that increased numbers of neurons were spontaneously active in CT-incubated tissue (control: 4/149; CT: 32/160; Fisher's exact test, P < 0.0001) and that cholinergic neurons were more responsive to electrical (single pulse and train of 20 pulses) or nicotinic (1,1-dimethyl-4-phenylpiperazinium (DMPP; 10 µM) stimulation. Expression of the neuronal activity marker, pCREB, was also increased in the CT-treated submucous plexus neurons. c-Fos expression and spontaneous fast excitatory postsynaptic potentials (EPSPs), recorded by intracellular electrodes, were increased by CT exposure in a small subset of myenteric neurons. However, the effect of CT on the myenteric plexus is less clear as spontaneous Ca2+ activity and electrical- or nicotinic-evoked Ca2+ responses were reduced. Thus, in a model where CT exposure evokes hypersecretion, we observed sustained activation of cholinergic secretomotor neuron activity in the submucous plexus, pointing to involvement of these neurons in the overall response to CT.

13.
Front Cell Neurosci ; 11: 118, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28487635

RESUMO

The enteric nervous system (ENS) situated within the gastrointestinal tract comprises an intricate network of neurons and glia which together regulate intestinal function. The exact neuro-glial circuitry and the signaling molecules involved are yet to be fully elucidated. Vasoactive intestinal peptide (VIP) is one of the main neurotransmitters in the gut, and is important for regulating intestinal secretion and motility. However, the role of VIP and its VPAC receptors within the enteric circuitry is not well understood. We investigated this in the submucosal plexus of mouse jejunum using calcium (Ca2+)-imaging. Local VIP application induced Ca2+-transients primarily in neurons and these were inhibited by VPAC1- and VPAC2-antagonists (PG 99-269 and PG 99-465 respectively). These VIP-evoked neural Ca2+-transients were also inhibited by tetrodotoxin (TTX), indicating that they were secondary to action potential generation. Surprisingly, VIP induced Ca2+-transients in glia in the presence of the VPAC2 antagonist. Further, selective VPAC1 receptor activation with the agonist ([K15, R16, L27]VIP(1-7)/GRF(8-27)) predominantly evoked glial responses. However, VPAC1-immunoreactivity did not colocalize with the glial marker glial fibrillary acidic protein (GFAP). Rather, VPAC1 expression was found on cholinergic submucosal neurons and nerve fibers. This suggests that glial responses observed were secondary to neuronal activation. Trains of electrical stimuli were applied to fiber tracts to induce endogenous VIP release. Delayed glial responses were evoked when the VPAC2 antagonist was present. These findings support the presence of an intrinsic VIP/VPAC-initiated neuron-to-glia signaling pathway. VPAC1 agonist-evoked glial responses were inhibited by purinergic antagonists (PPADS and MRS2179), thus demonstrating the involvement of P2Y1 receptors. Collectively, we showed that neurally-released VIP can activate neurons expressing VPAC1 and/or VPAC2 receptors to modulate purine-release onto glia. Selective VPAC1 activation evokes a glial response, whereas VPAC2 receptors may act to inhibit this response. Thus, we identified a component of an enteric neuron-glia circuit that is fine-tuned by endogenous VIP acting through VPAC1- and VPAC2-mediated pathways.

14.
Front Neurosci ; 4: 162, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21048896

RESUMO

Cholera toxin (CT) is well established to produce diarrhea by producing hyperactivity of the enteric neural circuits that regulate water and electrolyte secretion. Its effects on intestinal motor patterns are less well understood. We examined the effects of luminal CT on motor activity of guinea-pig jejunum in vitro. Segments of jejunum were cannulated at either end and mounted horizontally. Their contractile activity was video-imaged and the recordings were used to construct spatiotemporal maps of contractile activity with CT (1.25 or 12.5 µg/ml) in the lumen. Both concentrations of CT induced propulsive motor activity in jejunal segments. The effect of 1.25 µg/ml CT was markedly enhanced by co-incubation with granisetron (5-HT(3) antagonist, 1 µM), which prevents the hypersecretion induced by CT. The increased propulsive activity was not accompanied by increased segmentation and occurred very early after exposure to CT in the presence of granisetron. Luminal CT also reduced the pressure threshold for saline distension evoked propulsive reflexes, an effect resistant to granisetron. In contrast, CT prevented the induction of segmenting contractions by luminal decanoic acid, so its effects on propulsive and segmenting contractile activity are distinctly different. Thus, in addition to producing hypersecretion, CT excites propulsive motor activity with an entirely different time course and pharmacology, but inhibits nutrient-induced segmentation. This suggests that CT excites more than one enteric neural circuit and that propulsive and segmenting motor patterns are differentially regulated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA