Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dev Biol ; 332(2): 371-82, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19520071

RESUMO

The fly brain is formed by approximately hundred paired lineages of neurons, each lineage derived from one neuroblast. Embryonic neuroblasts undergo a small number of divisions and produce the primary neurons that form the functioning larval brain. In the larva, neuroblasts produce the secondary lineages that make up the bulk of the adult brain. Axons of a given secondary lineage fasciculate with each other and form a discrete bundle, the secondary axon tract (SAT). Secondary axon tracts prefigure the long axon connections of the adult brain, and therefore pathway choices of SATs made in the larva determine adult brain circuitry. Drosophila Shotgun/E-cadherin (DE-cad) and its binding partner Armadillo/beta-catenin (beta-cat) are expressed in newly born secondary neurons and their axons. The fact that the highly diverse, yet invariant pattern of secondary lineages and SATs has been recently mapped in the wild-type brain enabled us to investigate the role of DE-cad and beta-cat with the help of MARCM clones. Clones were validated by their absence of DE-cad immuno-reactivity. The most significant phenotype consists in the defasciculation and an increased amount of branching of SATs at the neuropile-cortex boundary, as well as subtle changes in the trajectory of SATs within the neuropile. In general, only a fraction of mutant clones in a given lineage showed structural abnormalities. Furthermore, although they all globally express DE-cad and beta-cat, lineages differ in their requirement for DE-cad function. Some lineages never showed morphological abnormalities in MARCM clones, whereas others reacted with abnormal branching and changes in SAT trajectory at a high frequency. We conclude that DE-cad/beta-cat form part of the mechanism that control branching and trajectory of axon tracts in the larval brain.


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Axônios/metabolismo , Encéfalo , Caderinas/metabolismo , Movimento Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Fatores de Transcrição/metabolismo , Animais , Proteínas do Domínio Armadillo/genética , Encéfalo/anatomia & histologia , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Caderinas/genética , Linhagem da Célula , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/crescimento & desenvolvimento , Modelos Anatômicos , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Fenótipo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/genética
2.
Dev Biol ; 334(2): 355-68, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19646433

RESUMO

Glial cells play important roles in the developing brain during axon fasciculation, growth cone guidance, and neuron survival. In the Drosophila brain, three main classes of glia have been identified including surface, cortex, and neuropile glia. While surface glia ensheaths the brain and is involved in the formation of the blood-brain-barrier and the control of neuroblast proliferation, the range of functions for cortex and neuropile glia is less well understood. In this study, we use the nirvana2-GAL4 driver to visualize the association of cortex and neuropile glia with axon tracts formed by different brain lineages and selectively eliminate these glial populations via induced apoptosis. The larval central brain consists of approximately 100 lineages. Each lineage forms a cohesive axon bundle, the secondary axon tract (SAT). While entering and traversing the brain neuropile, SATs interact in a characteristic way with glial cells. Some SATs are completely invested with glial processes; others show no particular association with glia, and most fall somewhere in between these extremes. Our results demonstrate that the elimination of glia results in abnormalities in SAT fasciculation and trajectory. The most prevalent phenotype is truncation or misguidance of axon tracts, or abnormal fasciculation of tracts that normally form separate pathways. Importantly, the degree of glial association with a given lineage is positively correlated with the severity of the phenotype resulting from glial ablation. Previous studies have focused on the embryonic nerve cord or adult-specific compartments to establish the role of glia. Our study provides, for the first time, an analysis of glial function in the brain during axon formation and growth in larval development.


Assuntos
Axônios/fisiologia , Encéfalo/crescimento & desenvolvimento , Drosophila melanogaster/crescimento & desenvolvimento , Vias Neurais/crescimento & desenvolvimento , Neurópilo/fisiologia , Animais , Apoptose , Axônios/ultraestrutura , Encéfalo/ultraestrutura , Linhagem da Célula , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Gânglios dos Invertebrados/crescimento & desenvolvimento , Gânglios dos Invertebrados/ultraestrutura , Larva , Morfogênese , Corpos Pedunculados/crescimento & desenvolvimento , Corpos Pedunculados/ultraestrutura , Vias Neurais/ultraestrutura , Neuroglia/fisiologia , Neuroglia/ultraestrutura , Neurópilo/ultraestrutura
3.
Dev Biol ; 335(2): 289-304, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19538956

RESUMO

The Drosophila central brain is composed of approximately 100 paired lineages, with most lineages comprising 100-150 neurons. Most lineages have a number of important characteristics in common. Typically, neurons of a lineage stay together as a coherent cluster and project their axons into a coherent bundle visible from late embryo to adult. Neurons born during the embryonic period form the primary axon tracts (PATs) that follow stereotyped pathways in the neuropile. Apoptotic cell death removes an average of 30-40% of primary neurons around the time of hatching. Secondary neurons generated during the larval period form secondary axon tracts (SATs) that typically fasciculate with their corresponding primary axon tract. SATs develop into the long fascicles that interconnect the different compartments of the adult brain. Structurally, we distinguish between three types of lineages: PD lineages, characterized by distinct, spatially separate proximal and distal arborizations; C lineages with arborizations distributed continuously along the entire length of their tract; D lineages that lack proximal arborizations. Arborizations of many lineages, in particular those of the PD type, are restricted to distinct neuropile compartments. We propose that compartments are "scaffolded" by individual lineages, or small groups thereof. Thereby, the relatively small number of primary neurons of each primary lineage set up the compartment map in the late embryo. Compartments grow during the larval period simply by an increase in arbor volume of primary neurons. Arbors of secondary neurons form within or adjacent to the larval compartments, resulting in smaller compartment subdivisions and additional, adult specific compartments.


Assuntos
Axônios , Encéfalo/embriologia , Drosophila/embriologia , Neurônios/citologia , Animais , Apoptose , Encéfalo/citologia , Linhagem da Célula , Imuno-Histoquímica , Modelos Biológicos
4.
J Comp Neurol ; 506(3): 469-88, 2008 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-18041774

RESUMO

The Drosophila genome encodes 17 members of the cadherin family of adhesion molecules, which in vertebrates has been implicated in patterning the nervous system through cell and axon sorting. With only a few exceptions all cadherins show widespread expression in the larval brain. What expression patterns have in common is that 1) they are global, in the sense that all lineages of the central brain or optic lobe, or both, show expression; and 2) expression is stage-specific: some cadherins are expressed only in primary neurons (located closest to the neuropile), others in early secondary neurons (near the brain surface), or primaries plus late secondaries. The Fat-like cadherins, Fat and Dachsous, as well as Cad96Ca and Cad74A, are expressed in the epithelial optic lobe anlagen, which matches the widespread epithelial expression of these molecules in the embryo. DE-cadherin is restricted to immature secondary neurons and glia; by contrast, DN-cadherin, Flamingo, Cad87A, Cad99C, and Calsyntenin-1 appear in differentiating primary neurons and, at a later stage, some or all secondary neurons. Cad87A is strongly enriched apically in epithelia and in neuronal dendrites. Fat-like, Cad86C, Cad88C, Cad89D, and Dret are expressed ubiquitously in embryonic and larval brains at low or moderate levels. We conclude from this analysis that cadherins are likely to play a role in 'generic' neural functions, such as neurite fasciculation, branching, and synapse formation.


Assuntos
Química Encefálica/fisiologia , Encéfalo/crescimento & desenvolvimento , Caderinas/biossíntese , Animais , Antimetabólitos , Encéfalo/citologia , Bromodesoxiuridina , Caderinas/genética , Caderinas/fisiologia , Drosophila , Embrião não Mamífero/fisiologia , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Imuno-Histoquímica , Hibridização In Situ , Larva/crescimento & desenvolvimento , Larva/fisiologia , Neurônios/fisiologia , Especificidade da Espécie
5.
Adv Exp Med Biol ; 628: 1-31, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18683635

RESUMO

In this chapter we will start out by describing in more detail the progenitors of the nervous system, the neuroblasts and ganglion mother cells. Subsequently we will survey the generic cell types that make up the developing Drosophila brain, namely neurons, glial cells and tracheal cells. Finally, we will attempt a synopsis of the neuronal connectivity of the larval brain that can be deduced from the analysis of neural lineages and their relationship to neuropile compartments.


Assuntos
Encéfalo/crescimento & desenvolvimento , Drosophila/crescimento & desenvolvimento , Animais , Encéfalo/anatomia & histologia , Encéfalo/citologia , Proliferação de Células , Drosophila/anatomia & histologia , Larva/anatomia & histologia , Larva/citologia , Larva/crescimento & desenvolvimento , Modelos Neurológicos , Morfogênese , Neurônios/citologia , Neurônios/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia
6.
Mech Dev ; 120(6): 711-20, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12834870

RESUMO

Drosophila melanogaster possesses a single gene, Dm myb, that is closely related to the vertebrate family of Myb genes, which encode transcription factors involved in regulatory decisions affecting cell proliferation, differentiation and apoptosis. In proliferating cells, the Dm myb gene product, DMyb, promotes both S-phase and M-phase, and acts to preserve diploidy by suppressing endoreduplication. The CBP and p300 proteins are transcriptional co-activators that interact with a multitude of transcription factors, including Myb. In transient transfection assays, transcriptional activation by DMyb is enhanced by co-expression of the Drosophila CBP protein, dCBP. Genetic interaction analysis reveals that these genes work together to promote mitosis, thereby demonstrating the physiological relevance of the biochemical interaction between the Myb and CBP proteins within a developing organism.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Transativadores/metabolismo , Animais , Proteína de Ligação a CREB , Proteínas de Ciclo Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Masculino , Mutação , Proteínas Proto-Oncogênicas c-myb/genética , Pupa/genética , Pupa/metabolismo , Asas de Animais/anormalidades , Asas de Animais/crescimento & desenvolvimento
7.
Development ; 129(2): 347-59, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11807028

RESUMO

We have previously established that the single myb gene in Drosophila melanogaster, Dm myb, which is related to the proto-oncogene Myb, is required for the G2/M transition of the cell cycle and for suppression of endoreduplication in pupal wing cells. We now report that studies of the abdominal phenotype in loss-of-function Dm myb mutants reveal additional roles for Dm myb in the cell cycle, specifically in mitosis. Abdominal epidermal cells that are mutant for Dm myb proliferate more slowly than wild-type controls throughout pupation, with particularly sluggish progression through the early stages of mitosis. Abnormal mitoses associated with multiple functional centrosomes, unequal chromosome segregation, formation of micronuclei, and/or failure to complete cell division are common in the later cell cycles of mutant cells. Resulting nuclei are often aneuploid and/or polyploid. Similar defects have also been observed in loss-of-function mutations of the tumor suppressor genes p53, Brca1 and Brca2. These data demonstrate that in abdominal epidermal cells, Dm myb is required to sustain the appropriate rate of proliferation, to suppress formation of supernumerary centrosomes, and to maintain genomic integrity.


Assuntos
Ciclo Celular/fisiologia , Centrossomo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Genes myb , Genoma , Proteínas Proto-Oncogênicas c-myb/metabolismo , Abdome/anatomia & histologia , Abdome/fisiologia , Animais , Segregação de Cromossomos , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/genética , Feminino , Genes de Insetos , Hibridização in Situ Fluorescente , Mitose , Morfogênese/fisiologia , Mutação , Fenótipo , Proteínas Proto-Oncogênicas c-myb/genética , Asas de Animais/citologia , Asas de Animais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA