RESUMO
A major challenge of analyzing the compositional structure of microbiome data is identifying its potential origins. Here, we introduce fast expectation-maximization microbial source tracking (FEAST), a ready-to-use scalable framework that can simultaneously estimate the contribution of thousands of potential source environments in a timely manner, thereby helping unravel the origins of complex microbial communities ( https://github.com/cozygene/FEAST ). The information gained from FEAST may provide insight into quantifying contamination, tracking the formation of developing microbial communities, as well as distinguishing and characterizing bacteria-related health conditions.
Assuntos
Bactérias/isolamento & purificação , Microbiota , Adulto , Microbioma Gastrointestinal , Humanos , Lactente , Unidades de Terapia IntensivaRESUMO
Given the highly dynamic and complex nature of the human gut microbial community, the ability to identify and predict time-dependent compositional patterns of microbes is crucial to our understanding of the structure and functions of this ecosystem. One factor that could affect such time-dependent patterns is microbial interactions, wherein community composition at a given time point affects the microbial composition at a later time point. However, the field has not yet settled on the degree of this effect. Specifically, it has been recently suggested that only a minority of taxa depend on the microbial composition in earlier times. To address the issue of identifying and predicting temporal microbial patterns we developed a new model, MTV-LMM (Microbial Temporal Variability Linear Mixed Model), a linear mixed model for the prediction of microbial community temporal dynamics. MTV-LMM can identify time-dependent microbes (i.e., microbes whose abundance can be predicted based on the previous microbial composition) in longitudinal studies, which can then be used to analyze the trajectory of the microbiome over time. We evaluated the performance of MTV-LMM on real and synthetic time series datasets, and found that MTV-LMM outperforms commonly used methods for microbiome time series modeling. Particularly, we demonstrate that the effect of the microbial composition in previous time points on the abundance of taxa at later time points is underestimated by a factor of at least 10 when applying previous approaches. Using MTV-LMM, we demonstrate that a considerable portion of the human gut microbiome, both in infants and adults, has a significant time-dependent component that can be predicted based on microbiome composition in earlier time points. This suggests that microbiome composition at a given time point is a major factor in defining future microbiome composition and that this phenomenon is considerably more common than previously reported for the human gut microbiome.
Assuntos
Biologia Computacional/métodos , Microbioma Gastrointestinal , Modelos Biológicos , Adulto , Bases de Dados Genéticas , Feminino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Humanos , Lactente , Masculino , Fatores de TempoRESUMO
Unicellular eukaryotes are an integral part of many microbial ecosystems where they interact with their surrounding prokaryotic community-either as predators or as mutualists. Within the rumen, one of the most complex host-associated microbial habitats, ciliate protozoa represent the main micro-eukaryotes, accounting for up to 50% of the microbial biomass. Nonetheless, the extent of the ecological effect of protozoa on the microbial community and on the rumen metabolic output remains largely understudied. To assess the role of protozoa on the rumen ecosystem, we established an in-vitro system in which distinct protozoa sub-communities were introduced to the native rumen prokaryotic community. We show that the different protozoa communities exert a strong and differential impact on the composition of the prokaryotic community, as well as its function including methane production. Furthermore, the presence of protozoa increases prokaryotic diversity with a differential effect on specific bacterial populations such as Gammaproteobacteria, Prevotella and Treponema. Our results suggest that protozoa contribute to the maintenance of prokaryotic diversity in the rumen possibly by mitigating the effect of competitive exclusion between bacterial taxa. Our findings put forward the rumen protozoa populations as potentially important ecosystem engineers for future microbiome modulation strategies.
Assuntos
Cilióforos , Rúmen , Animais , Bactérias/genética , Bactérias/metabolismo , Cilióforos/metabolismo , Ecossistema , Metano/metabolismo , Rúmen/microbiologiaRESUMO
BACKGROUND: Metagenomic sequencing has led to the identification and assembly of many new bacterial genome sequences. These bacteria often contain plasmids: usually small, circular double-stranded DNA molecules that may transfer across bacterial species and confer antibiotic resistance. These plasmids are generally less studied and understood than their bacterial hosts. Part of the reason for this is insufficient computational tools enabling the analysis of plasmids in metagenomic samples. RESULTS: We developed SCAPP (Sequence Contents-Aware Plasmid Peeler)-an algorithm and tool to assemble plasmid sequences from metagenomic sequencing. SCAPP builds on some key ideas from the Recycler algorithm while improving plasmid assemblies by integrating biological knowledge about plasmids. We compared the performance of SCAPP to Recycler and metaplasmidSPAdes on simulated metagenomes, real human gut microbiome samples, and a human gut plasmidome dataset that we generated. We also created plasmidome and metagenome data from the same cow rumen sample and used the parallel sequencing data to create a novel assessment procedure. Overall, SCAPP outperformed Recycler and metaplasmidSPAdes across this wide range of datasets. CONCLUSIONS: SCAPP is an easy to use Python package that enables the assembly of full plasmid sequences from metagenomic samples. It outperformed existing metagenomic plasmid assemblers in most cases and assembled novel and clinically relevant plasmids in samples we generated such as a human gut plasmidome. SCAPP is open-source software available from: https://github.com/Shamir-Lab/SCAPP . Video abstract.
Assuntos
Metagenoma , Metagenômica , Algoritmos , Humanos , Plasmídeos/genética , Análise de Sequência de DNA , SoftwareRESUMO
Mastitis has deleterious effects on ovarian function and reproductive performance. We studied the association between plasma or follicular fluid (FF) obtained from endotoxin-induced mastitic cows, and oocyte developmental competence. Lactating Holstein cows were synchronized using the Ovsynch protocol. On Day 6 of the synchronized cycle, an additional PGF2α dose was administered, and either Escherichia coli endotoxin (LPS, 10⯵g; nâ¯=â¯3 cows) or saline (nâ¯=â¯3 cows) was administered to one udder quarter per cow, 36â¯h later. Milk samples were collected and rectal temperatures recorded. Cows treated with LPS showed a typical transient increase in body temperature (40.3⯰C⯱â¯0.4), whereas cows treated with saline maintained normal body temperature (38.9⯰C⯱â¯0.04). A higher (Pâ¯<â¯0.05) somatic cell count was recorded for cows treated with LPS. Plasma samples were collected and FF was aspirated from the preovulatory follicles by transvaginal ultrasound probe, 6â¯h after LPS administration. Radioimmunoassay was performed on plasma samples to determine estradiol and cortisol concentrations. Either FF or plasma was further used as maturation medium. In the first experiment, oocytes were matured in TCM-199 (Control) or in FF aspirated from cows treated with saline (FF-Saline) or LPS (FF-LPS). Cleavage rate to the 2- to 4-cell stage embryo did not differ among groups. However, the proportion of developed blastocysts on Day 7 postfertilization in the FF-LPS group tended to be lower for that in FF-Saline and was lower (Pâ¯<â¯0.05) than that in the Control groups (10.6 vs. 22.4 and 24.4%, respectively). In the second experiment, oocytes were matured in TCM-199 (Control), or in plasma obtained from cows treated with saline (Plasma-Saline) or LPS (Plasma-LPS). Similar to the FF findings, cleavage rate did not differ among groups; however, the proportion of developing blastocysts tended to be lower in the Plasma-LPS group than in the Plasma-Saline group and was lower (Pâ¯<â¯0.05) from that in the Control group (11.0 vs. 25.5 and 34.7%, respectively). The proportion of apoptotic cells per blastocyst, determined by TUNEL assay, did not differ among the experimental groups. The findings shed light on the mechanism by which mastitis induces a disruption in oocyte developmental competence. Further studies are required to clarify whether the negative effect on oocyte developmental competence is a result of LPS, by itself, or due to elevation of secondary inflammatory agents.
Assuntos
Bovinos , Líquido Folicular/química , Lipopolissacarídeos/toxicidade , Mastite Bovina/induzido quimicamente , Oócitos/efeitos dos fármacos , Plasma , Animais , Meios de Cultura , Fragmentação do DNA , Feminino , Técnicas de Maturação in Vitro de Oócitos/veterináriaRESUMO
How complex communities assemble through the animal's life, and how predictable the process is remains unexplored. Here, we investigate the forces that drive the assembly of rumen microbiomes throughout a cow's life, with emphasis on the balance between stochastic and deterministic processes. We analyse the development of the rumen microbiome from birth to adulthood using 16S-rRNA amplicon sequencing data and find that the animals shared a group of core successional species that invaded early on and persisted until adulthood. Along with deterministic factors, such as age and diet, early arriving species exerted strong priority effects, whereby dynamics of late successional taxa were strongly dependent on microbiome composition at early life stages. Priority effects also manifest as dramatic changes in microbiome development dynamics between animals delivered by C-section vs. natural birth, with the former undergoing much more rapid species invasion and accelerated microbiome development. Overall, our findings show that together with strong deterministic constrains imposed by diet and age, stochastic colonization in early life has long-lasting impacts on the development of animal microbiomes.
Assuntos
Bactérias/classificação , Biodiversidade , Dieta , Microbioma Gastrointestinal/fisiologia , Rúmen/microbiologia , Fatores Etários , Ração Animal , Animais , Bactérias/genética , Bovinos , DNA Bacteriano , Ecologia , Feminino , Microbioma Gastrointestinal/genética , Masculino , Filogenia , RNA Ribossômico 16S/genéticaRESUMO
We examined acute exposure of Holstein cows to di(2-ethylhexyl) phthalate (DEHP) and its carryover effects on ovarian function and oocyte developmental competence. Synchronized cows were tube-fed with water or 100 mg/kg DEHP per day for 3 days. Blood, urine and milk samples were collected before, during and after DEHP exposure to examine its clearance pattern. Ovarian follicular dynamics was monitored through an entire estrous cycle by ultrasonographic scanning. Follicular fluids were aspirated from the preovulatory follicles on days 0 and 29 of the experiment and analyzed for phthalate metabolites and estradiol concentration. The aspirated follicular fluid was used as maturation medium for in-vitro embryo production. Findings revealed that DEHP impairs the pattern of follicular development, with a prominent effect on dominant follicles. The diameter and growth rate of the first- and second-wave dominant follicles were lower (P < 0.05) in the DEHP-treated group. Estradiol concentration in the follicular fluid was lower in the DEHP-treated group than in controls, and associated with a higher number of follicular pathologies (follicle diameter >25 mm). The pattern of growth and regression of the corpus luteum differed between groups, with a lower volume in the DEHP-treated group (P < 0.05). The follicular fluid aspirated from the DEHP-treated group, but not the controls, contained 23 nM mono(2-ethylhexyl) phthalate. Culturing of cumulus oocyte complexes in the follicular fluid aspirated from DEHP-treated cows reduced the proportion of oocytes progressing to the MII stage, and the proportions of 2- to 4-cell-stage embryos (P < 0.04) and 7-day blastocysts (P < 0.06). The results describe the risk associated with acute exposure to DEHP and its deleterious carryover effects on ovarian function, nuclear maturation and oocyte developmental competence.
Assuntos
Dietilexilftalato/química , Oócitos/citologia , Folículo Ovariano/efeitos dos fármacos , Ovário/efeitos dos fármacos , Animais , Bovinos , Núcleo Celular/metabolismo , Corpo Lúteo/efeitos dos fármacos , Corpo Lúteo/metabolismo , Células do Cúmulo/citologia , Células do Cúmulo/efeitos dos fármacos , Citoplasma/metabolismo , Dietilexilftalato/sangue , Dietilexilftalato/urina , Estradiol/metabolismo , Ciclo Estral , Feminino , Líquido Folicular , Lactação , Meiose , Leite/química , Oócitos/efeitos dos fármacos , Folículo Ovariano/diagnóstico por imagem , Ácidos Ftálicos/química , Análise de Regressão , Espectrometria de Massas em Tandem , UltrassonografiaRESUMO
This study establishes an experimental model for subclinical mastitis induced by Gram-positive (G+) exosecretions of Staphylococcus aureus origin or Gram-negative (G-) endotoxin of Escherichia coli origin to examine its effects on follicular growth and steroid concentrations in Holstein dairy cows. Cows were synchronized with the Ovsynch protocol followed by a series of follicular cycles that included GnRH and PGF2α doses administered every 8 days. Cows received small intramammary doses of either G+ (10 µg, n = 10) or G- (0.5 µg, n = 6) toxin, or saline (n = 6; uninfected control) every 48 hours for 20 days. Follicular fluids were aspirated from preovulatory follicles before (aspiration one: control), at the end of (aspiration two: immediate effect), and 16 days after the end of (aspiration three: carryover effect) toxin exposure. During the 3 weeks of subclinical mastitis induced by G+ or G-, no local inflammatory signs were detected in the mammary gland and no systemic symptoms were noted: body temperatures of the treated cows did not differ from controls; plasma cortisol and haptoglobin concentrations were not elevated and did not differ among groups. Somatic cell count was higher in the treated groups than in controls, and higher in the G- versus G+ group. For analysis of reproductive responses, cows were further classified as nonaffected or affected based on an more than 20% decline in follicular androstenedione concentration in aspiration two or three relative to the first, control aspiration. Most G- (5/6) and 40% of G+ (4/10) cows were defined as affected by induced mastitis. An immediate decrease in the number of medium-size follicles was recorded on Day 4 of the induced cycle, toward the end of the 20-day mastitis induction, in the affected G+ compared with uninfected control group (1.0 ± 0.5 vs. 3.0 ± 0.4 follicles; P < 0.05); the affected G- and nonaffected G+ subgroups exhibited a similar numerical decline in the number of follicles. A carryover (but not immediate) decrease to 51% and 62% in follicular estradiol concentrations in G- affected group and G+ affected group was detected relative to controls (P < 0.05). The nonaffected G+ subgroup did not differ from its control counterparts. Based on the current experimental model, subclinical IMI induced by G+ or G- toxin disrupts follicular functions, and it seems that the ovarian pool of early antral follicles is susceptible to subclinical mastitis.