Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(12): 105402, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38229400

RESUMO

Eosinophil peroxidase (EPO) is the most abundant granule protein exocytosed by eosinophils, specialized human phagocytes. Released EPO catalyzes the formation of reactive oxidants from bromide, thiocyanate, and nitrite that kill tissue-invading parasites. However, EPO also plays a deleterious role in inflammatory diseases, making it a potential pharmacological target. A major hurdle is the high similarity to the homologous myeloperoxidase (MPO), which requires a detailed understanding of the small structural differences that can be used to increase the specificity of the inhibitors. Here, we present the first crystal structure of mature leukocyte EPO at 1.6 Å resolution together with analyses of its posttranslational modifications and biochemical properties. EPO has an exceptionally high number of positively charged surface patches but only two occupied glycosylation sites. The crystal structure further revealed the existence of a light (L) and heavy (H) chain as a result of proteolytic cleavage. Detailed comparison with the structure of human MPO allows us to identify differences that may contribute to the known divergent enzymatic properties. The crystal structure revealed fully established ester links between the prosthetic group and the protein, the comparably weak imidazolate character of the proximal histidine, and the conserved structure of the catalytic amino acids and Ca2+-binding site. Prediction of the structure of unprocessed proeosinophil peroxidase allows further structural analysis of the three protease cleavage sites and the potential pro-convertase recognition site in the propeptide. Finally, EPO biosynthesis and its biochemical and biophysical properties are discussed with respect to the available data from the well-studied MPO.


Assuntos
Peroxidase de Eosinófilo , Heme , Humanos , Peroxidase de Eosinófilo/química , Eosinófilos/enzimologia , Heme/química , Processamento de Proteína Pós-Traducional
2.
Biochemistry ; 62(3): 835-850, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36706455

RESUMO

The heme enzyme chlorite dismutase (Cld) catalyzes the degradation of chlorite to chloride and dioxygen. Many questions about the molecular reaction mechanism of this iron protein have remained unanswered, including the electronic nature of the catalytically relevant oxoiron(IV) intermediate and its interaction with the distal, flexible, and catalytically active arginine. Here, we have investigated the dimeric Cld from Cyanothece sp. PCC7425 (CCld) and two variants having the catalytic arginine R127 (i) hydrogen-bonded to glutamine Q74 (wild-type CCld), (ii) arrested in a salt bridge with a glutamate (Q74E), or (iii) being fully flexible (Q74V). Presented stopped-flow spectroscopic studies demonstrate the initial and transient appearance of Compound I in the reaction between CCld and chlorite at pH 5.0 and 7.0 and the dominance of spectral features of an oxoiron(IV) species (418, 528, and 551 nm) during most of the chlorite degradation period at neutral and alkaline pH. Arresting the R127 in a salt bridge delays chlorite decomposition, whereas increased flexibility accelerates the reaction. The dynamics of R127 does not affect the formation of Compound I mediated by hypochlorite but has an influence on Compound I stability, which decreases rapidly with increasing pH. The decrease in activity is accompanied by the formation of protein-based amino acid radicals. Compound I is demonstrated to oxidize iodide, chlorite, and serotonin but not hypochlorite. Serotonin is able to dampen oxidative damage and inactivation of CCld at neutral and alkaline pH. Presented data are discussed with respect to the molecular mechanism of Cld and the pronounced pH dependence of chlorite degradation.


Assuntos
Arginina , Serotonina , Concentração de Íons de Hidrogênio , Cinética
3.
J Biol Chem ; 298(11): 102514, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36150500

RESUMO

The heme enzyme myeloperoxidase (MPO) is one of the key players in the neutrophil-mediated killing of invading pathogens as part of the innate immune system. MPO generates antimicrobial oxidants, which indiscriminately and effectively kill phagocytosed pathogens. Staphylococcus aureus, however, is able to escape this fate, in part by secreting a small protein called SPIN (Staphylococcal Peroxidase Inhibitor), which specifically targets and inhibits MPO in a structurally complex manner. Here, we present the first crystal structures of the complex of SPIN-aureus and a truncated version (SPIN-truncated) with mature dimeric leukocyte MPO. We unravel the contributions of the two domains to the kinetics and thermodynamics of SPIN-aureus binding to MPO by using a broad array of complementary biochemical and biophysical methods. The C-terminal "recognition" domain is shown to mediate specific binding to MPO, while interaction of the N-terminal "inhibitory" domain is guided mainly by hydrophobic effects and thus is less sequence dependent. We found that inhibition of MPO is achieved by reducing substrate migration, but SPIN-aureus cannot completely block MPO activity. Its' effectiveness is inversely related to substrate size, with no discernible dependence on other factors. Thus, SPIN-aureus is an extremely high-affinity inhibitor and highly efficient for substrates larger than halogens. As aberrant MPO activity is implicated in a number of chronic inflammatory diseases, SPIN-aureus is the first promising protein inhibitor for specific inhibition of human MPO.


Assuntos
Peroxidase , Infecções Estafilocócicas , Humanos , Peroxidase/metabolismo , Staphylococcus , Staphylococcus aureus/metabolismo , Neutrófilos/metabolismo
4.
J Sep Sci ; 46(8): e2200943, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36807776

RESUMO

Detailed studies on the sorption behavior of plasmids on anion exchangers are rare compared to proteins. In this study, we systematically compare the elution behavior of plasmid DNA on three common anion exchange resins using linear gradient and isocratic elution experiments. Two plasmids of different lengths, 8 and 20 kbp, were studied and their elution characteristics were compared to a green fluorescent protein. Using established methods for determining retention characteristics of biomolecules in ion exchange chromatography lead to remarkable results. In contrast to the green fluorescent protein, plasmid DNA consistently elutes at one characteristic salt concentration in linear gradient elution. This salt concentration was the same independent of plasmid size but differed slightly for different resins. The behavior is consistent also at preparative loadings of plasmid DNA. Thus, only a single linear gradient elution experiment is sufficient to design elution in a process scale capture step. At isocratic elution conditions, plasmid DNA elutes only above this characteristic concentration. Even at slightly lower concentrations most plasmids remain tightly bound. We hypothesize, that the desorption is accompanied by a conformational change leading to a reduced number of available negative charges for binding. This explanation is supported by structural analysis before and after elution.


Assuntos
DNA , Cloreto de Sódio , Proteínas de Fluorescência Verde/genética , Plasmídeos , DNA/química , Cromatografia por Troca Iônica/métodos , Cloreto de Sódio/química , Ânions
5.
Biophys J ; 120(17): 3600-3614, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34339636

RESUMO

Monoderm bacteria utilize coproheme decarboxylases (ChdCs) to generate heme b by a stepwise decarboxylation of two propionate groups of iron coproporphyrin III (coproheme), forming two vinyl groups. This work focuses on actinobacterial ChdC from Corynebacterium diphtheriae (CdChdC) to elucidate the hydrogen peroxide-mediated decarboxylation of coproheme via monovinyl monopropionyl deuteroheme (MMD) to heme b, with the principal aim being to understand the reorientation mechanism of MMD during turnover. Wild-type CdChdC and variants, namely H118A, H118F, and A207E, were studied by resonance Raman and ultraviolet-visible spectroscopy, mass spectrometry, and molecular dynamics simulations. As actinobacterial ChdCs use a histidine (H118) as a distal base, we studied the H118A and H118F variants to elucidate the effect of 1) the elimination of the proton acceptor and 2) steric constraints within the active site. The A207E variant mimics the proximal H-bonding network found in chlorite dismutases. This mutation potentially increases the rigidity of the proximal site and might impair the rotation of the reaction intermediate MMD. We found that both wild-type CdChdC and the variant H118A convert coproheme mainly to heme b upon titration with H2O2. Interestingly, the variant A207E mostly accumulates MMD along with small amounts of heme b, whereas H118F is unable to produce heme b and accumulates only MMD. Together with molecular dynamics simulations, the spectroscopic data provide insight into the reaction mechanism and the mode of reorientation of MMD, i.e., a rotation in the active site versus a release and rebinding.


Assuntos
Carboxiliases , Corynebacterium diphtheriae , Carboxiliases/metabolismo , Corynebacterium diphtheriae/genética , Corynebacterium diphtheriae/metabolismo , Descarboxilação , Heme/metabolismo , Peróxido de Hidrogênio
6.
Biochemistry ; 60(8): 621-634, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33586945

RESUMO

Chlorite dismutases (Clds) are heme b-containing oxidoreductases that can decompose chlorite to chloride and molecular oxygen. They are divided in two clades that differ in oligomerization, subunit architecture, and the hydrogen-bonding network of the distal catalytic arginine, which is proposed to switch between two conformations during turnover. To understand the impact of the conformational dynamics of this basic amino acid on heme coordination, structure, and catalysis, Cld from Cyanothece sp. PCC7425 was used as a model enzyme. As typical for a clade 2 Cld, its distal arginine 127 is hydrogen-bonded to glutamine 74. The latter has been exchanged with either glutamate (Q74E) to arrest R127 in a salt bridge or valine (Q74V) that mirrors the setting in clade 1 Clds. We present the X-ray crystal structures of Q74V and Q74E and demonstrate the pH-induced changes in the environment and coordination of the heme iron by ultraviolet-visible, circular dichroism, and electron paramagnetic resonance spectroscopies as well as differential scanning calorimetry. The conformational dynamics of R127 is shown to have a significant role in heme coordination during the alkaline transition and in the thermal stability of the heme cavity, whereas its impact on the catalytic efficiency of chlorite degradation is relatively small. The findings are discussed with respect to (i) the flexible loop connecting the N-terminal and C-terminal ferredoxin-like domains, which differs in clade 1 and clade 2 Clds and carries Q74 in clade 2 proteins, and (ii) the proposed role(s) of the arginine in catalysis.


Assuntos
Arginina/metabolismo , Cloretos/metabolismo , Cyanothece/enzimologia , Heme/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Temperatura , Arginina/química , Catálise , Estabilidade Enzimática , Heme/química , Ligação de Hidrogênio , Cinética , Modelos Moleculares
7.
Handb Exp Pharmacol ; 264: 261-285, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33372235

RESUMO

Myeloperoxidase participates in innate immune defense mechanism through formation of microbicidal reactive oxidants and diffusible radical species. A unique activity is its ability to use chloride as a cosubstrate with hydrogen peroxide to generate chlorinating oxidants such as hypochlorous acid, a potent antimicrobial agent. However, chronic MPO activation can lead to indiscriminate protein modification causing tissue damage, and has been associated with chronic inflammatory diseases, atherosclerosis, and acute cardiovascular events. This has attracted considerable interest in the development of therapeutically useful MPO inhibitors. Today, based on the profound knowledge of structure and function of MPO and its biochemical and biophysical differences with the other homologous human peroxidases, various rational and high-throughput screening attempts were performed in developing specific irreversible and reversible inhibitors. The most prominent candidates as well as MPO inhibitors already studied in clinical trials are introduced and discussed.


Assuntos
Peróxido de Hidrogênio , Peroxidase , Humanos , Oxirredução , Peroxidase/metabolismo
8.
Arch Biochem Biophys ; 681: 108267, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31953133

RESUMO

Human peroxidasin 1 (hsPxd01) is a homotrimeric multidomain heme peroxidase embedded in the extracellular matrix. It catalyses the two-electron oxidation of bromide by hydrogen peroxide to hypobromous acid which mediates the formation of essential sulfilimine cross-links between methionine and hydroxylysine residues in collagen IV. This confers critical structural reinforcement to the extracellular matrix. This study presents for the first time transient kinetic measurements of the reactivity of hsPxd01 compound I and compound II with the endogenous one-electron donors nitrite, ascorbate, urate, tyrosine and serotonin using the sequential stopped-flow technique. At pH 7.4 and 25 °C compound I of hsPxd01 is reduced to compound II with apparent second-order rate constants ranging from (1.9 ± 0.1) × 104 M-1 s-1 (urate) to (4.8 ± 0.1) × 105 M-1 s-1 (serotonin). Reduction of compound II to the ferric state occurs with apparent second-order rate constants ranging from (4.3 ± 0.2) × 102 M-1 s-1 (tyrosine) to (7.7 ± 0.1) × 103 M-1 s-1 (serotonin). The relatively fast rates of compound I reduction suggest that these reactions may take place in vivo and modulate bromide oxidation due to formation of compound II. Urate is shown to inhibit the bromination activity of hsPxd01, whereas nitrite stimulates the formation of hypobromous acid. The results are discussed with respect to known kinetic data of homologous mammalian peroxidases and to the physiological role of human peroxidasin 1.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Peroxidase/metabolismo , Elétrons , Células HEK293 , Halogenação , Humanos , Peróxido de Hidrogênio/metabolismo , Cinética , Nitritos/metabolismo , Oxirredução , Serotonina/metabolismo , Tirosina/metabolismo , Ácido Úrico/metabolismo , Peroxidasina
9.
Arch Biochem Biophys ; 689: 108443, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32485152

RESUMO

Human peroxidasin 1 (PXDN) is a homotrimeric multidomain heme peroxidase and essential for tissue development and architecture. It has a biosynthetic function and catalyses the hypobromous acid-mediated formation of specific covalent sulfilimine (SN) bonds, which cross-link type IV collagen chains in basement membranes. Currently, it is unknown whether and which domain(s) [i.e. leucine-rich repeat domain (LRR), immunoglobulin domains, peroxidase domain, von Willebrand factor type C domain] of PXDN interact with the polymeric networks of the extracellular matrix (ECM), and how these interactions integrate and regulate the enzyme's cross-linking activity, without imparting oxidative damage to the ECM. In this study, we probed the interactions of four PXDN constructs with different domain compositions with components of a basement membrane extract by immunoprecipitation. Strong binding of the LRR-containing construct was detected with the major ECM protein laminin. Analysis of these interactions by surface plasmon resonance spectroscopy revealed similar kinetics and affinities of binding of the LRR-containing construct to human and murine laminin-111, with calculated dissociation constants of 1.0 and 1.5 µM, respectively. The findings are discussed with respect to the recently published in-solution structures of the PXDN constructs and the proposed biological role of this peroxidase.


Assuntos
Membrana Basal/metabolismo , Laminina/metabolismo , Peroxidases/metabolismo , Animais , Células HEK293 , Humanos , Leucina/química , Leucina/metabolismo , Camundongos , Peroxidases/química , Ligação Proteica , Domínios Proteicos , Isoformas de Proteínas/metabolismo
10.
J Biol Chem ; 293(5): 1676-1687, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29259126

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are a class of copper-containing enzymes that oxidatively degrade insoluble plant polysaccharides and soluble oligosaccharides. Upon reductive activation, they cleave the substrate and promote biomass degradation by hydrolytic enzymes. In this study, we employed LPMO9C from Neurospora crassa, which is active toward cellulose and soluble ß-glucans, to study the enzyme-substrate interaction and thermal stability. Binding studies showed that the reduction of the mononuclear active-site copper by ascorbic acid increased the affinity and the maximum binding capacity of LPMO for cellulose. The reduced redox state of the active-site copper and not the subsequent formation of the activated oxygen species increased the affinity toward cellulose. The lower affinity of oxidized LPMO could support its desorption after catalysis and allow hydrolases to access the cleavage site. It also suggests that the copper reduction is not necessarily performed in the substrate-bound state of LPMO. Differential scanning fluorimetry showed a stabilizing effect of the substrates cellulose and xyloglucan on the apparent transition midpoint temperature of the reduced, catalytically active enzyme. Oxidative auto-inactivation and destabilization were observed in the absence of a suitable substrate. Our data reveal the determinants of LPMO stability under turnover and non-turnover conditions and indicate that the reduction of the active-site copper initiates substrate binding.


Assuntos
Celulose/química , Cobre/química , Proteínas Fúngicas/química , Oxigenases de Função Mista/química , Neurospora crassa/enzimologia , Domínio Catalítico , Cobre/metabolismo , Proteínas Fúngicas/genética , Oxigenases de Função Mista/genética , Neurospora crassa/genética
11.
J Biol Chem ; 293(4): 1330-1345, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29242189

RESUMO

Oxidation of halides and thiocyanate by heme peroxidases to antimicrobial oxidants is an important cornerstone in the innate immune system of mammals. Interestingly, phylogenetic and physiological studies suggest that homologous peroxidases are already present in mycetozoan eukaryotes such as Dictyostelium discoideum This social amoeba kills bacteria via phagocytosis for nutrient acquisition at its single-cell stage and for antibacterial defense at its multicellular stages. Here, we demonstrate that peroxidase A from D. discoideum (DdPoxA) is a stable, monomeric, glycosylated, and secreted heme peroxidase with homology to mammalian peroxidases. The first crystal structure (2.5 Å resolution) of a mycetozoan peroxidase of this superfamily shows the presence of a post-translationally-modified heme with one single covalent ester bond between the 1-methyl heme substituent and Glu-236. The metalloprotein follows the halogenation cycle, whereby compound I oxidizes iodide and thiocyanate at high rates (>108 m-1 s-1) and bromide at very low rates. It is demonstrated that DdPoxA is up-regulated and likely secreted at late multicellular development stages of D. discoideum when migrating slugs differentiate into fruiting bodies that contain persistent spores on top of a cellular stalk. Expression of DdPoxA is shown to restrict bacterial contamination of fruiting bodies. Structure and function of DdPoxA are compared with evolutionary-related mammalian peroxidases in the context of non-specific immune defense.


Assuntos
Dictyostelium/enzimologia , Heme Oxigenase (Desciclizante)/química , Heme Oxigenase (Desciclizante)/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Catálise , Dictyostelium/genética , Heme Oxigenase (Desciclizante)/genética , Oxirredução , Proteínas de Protozoários/genética , Relação Estrutura-Atividade
12.
J Biol Chem ; 293(38): 14823-14838, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30072383

RESUMO

Dye-decolorizing peroxidases (DyPs) represent the most recently classified hydrogen peroxide-dependent heme peroxidase family. Although widely distributed with more than 5000 annotated genes and hailed for their biotechnological potential, detailed biochemical characterization of their reaction mechanism remains limited. Here, we present the high-resolution crystal structures of WT B-class DyP from the pathogenic bacterium Klebsiella pneumoniae (KpDyP) (1.6 Å) and the variants D143A (1.3 Å), R232A (1.9 Å), and D143A/R232A (1.1 Å). We demonstrate the impact of elimination of the DyP-typical, distal residues Asp-143 and Arg-232 on (i) the spectral and redox properties, (ii) the kinetics of heterolytic cleavage of hydrogen peroxide, (iii) the formation of the low-spin cyanide complex, and (iv) the stability and reactivity of an oxoiron(IV)porphyrin π-cation radical (Compound I). Structural and functional studies reveal that the distal aspartate is responsible for deprotonation of H2O2 and for the poor oxidation capacity of Compound I. Elimination of the distal arginine promotes a collapse of the distal heme cavity, including blocking of one access channel and a conformational change of the catalytic aspartate. We also provide evidence of formation of an oxoiron(IV)-type Compound II in KpDyP with absorbance maxima at 418, 527, and 553 nm. In summary, a reaction mechanism of the peroxidase cycle of B-class DyPs is proposed. Our observations challenge the idea that peroxidase activity toward conventional aromatic substrates is related to the physiological roles of B-class DyPs.


Assuntos
Arginina/metabolismo , Ácido Aspártico/metabolismo , Corantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidases/metabolismo , Substituição de Aminoácidos , Catálise , Domínio Catalítico , Dicroísmo Circular , Cor , Cristalografia por Raios X , Dimerização , Estabilidade Enzimática , Heme/química , Concentração de Íons de Hidrogênio , Hidrólise , Klebsiella pneumoniae/metabolismo , Peroxidases/química , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrofotometria Ultravioleta
13.
J Biol Chem ; 293(17): 6374-6386, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29496995

RESUMO

Protein carbamylation by cyanate is a post-translational modification associated with several (patho)physiological conditions, including cardiovascular disorders. However, the biochemical pathways leading to protein carbamylation are incompletely characterized. This work demonstrates that the heme protein myeloperoxidase (MPO), which is secreted at high concentrations at inflammatory sites from stimulated neutrophils and monocytes, is able to catalyze the two-electron oxidation of cyanide to cyanate and promote the carbamylation of taurine, lysine, and low-density lipoproteins. We probed the role of cyanide as both electron donor and low-spin ligand by pre-steady-state and steady-state kinetic analyses and analyzed reaction products by MS. Moreover, we present two further pathways of carbamylation that involve reaction products of MPO, namely oxidation of cyanide by hypochlorous acid and reaction of thiocyanate with chloramines. Finally, using an in vivo approach with mice on a high-fat diet and carrying the human MPO gene, we found that during chronic exposure to cyanide, mimicking exposure to pollution and smoking, MPO promotes protein-bound accumulation of carbamyllysine (homocitrulline) in atheroma plaque, demonstrating a link between cyanide exposure and atheroma. In summary, our findings indicate that cyanide is a substrate for MPO and suggest an additional pathway for in vivo cyanate formation and protein carbamylation that involves MPO either directly or via its reaction products hypochlorous acid or chloramines. They also suggest that chronic cyanide exposure could promote the accumulation of carbamylated proteins in atherosclerotic plaques.


Assuntos
Cianatos , Cianetos , Peroxidase , Placa Aterosclerótica/enzimologia , Carbamilação de Proteínas , Animais , Citrulina/análogos & derivados , Citrulina/química , Citrulina/genética , Citrulina/metabolismo , Cianatos/química , Cianatos/metabolismo , Cianetos/química , Cianetos/metabolismo , Humanos , Camundongos , Camundongos Knockout , Oxirredução , Peroxidase/química , Peroxidase/genética , Peroxidase/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia
14.
Biochemistry ; 57(13): 2044-2057, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29536725

RESUMO

Coproheme decarboxylases (ChdC) catalyze the hydrogen peroxide-mediated conversion of coproheme to heme b. This work compares the structure and function of wild-type (WT) coproheme decarboxylase from Listeria monocytogenes and its M149A, Q187A, and M149A/Q187A mutants. The UV-vis, resonance Raman, and electron paramagnetic resonance spectroscopies clearly show that the ferric form of the WT protein is a pentacoordinate quantum mechanically mixed-spin state, which is very unusual in biological systems. Exchange of the Met149 residue to Ala dramatically alters the heme coordination, which becomes a 6-coordinate low spin species with the amide nitrogen atom of the Q187 residue bound to the heme iron. The interaction between M149 and propionyl 2 is found to play an important role in keeping the Q187 residue correctly positioned for closure of the distal cavity. This is confirmed by the observation that in the M149A variant two CO conformers are present corresponding to open (A0) and closed (A1) conformations. The CO of the latter species, the only conformer observed in the WT protein, is H-bonded to Q187. In the absence of the Q187 residue or in the adducts of all the heme b forms of ChdC investigated herein (containing vinyls in positions 2 and 4), only the A0 conformer has been found. Moreover, M149 is shown to be involved in the formation of a covalent bond with a vinyl substituent of heme b at excess of hydrogen peroxide.


Assuntos
Proteínas de Bactérias/química , Carboxiliases/química , Listeria monocytogenes/enzimologia , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Carboxiliases/genética , Domínio Catalítico , Listeria monocytogenes/genética , Relação Estrutura-Atividade
15.
J Biol Chem ; 292(20): 8244-8261, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28348079

RESUMO

Myeloperoxidase (MPO) is synthesized by neutrophil and monocyte precursor cells and contributes to host defense by mediating microbial killing. Although several steps in MPO biosynthesis and processing have been elucidated, many questions remained, such as the structure-function relationship of monomeric unprocessed proMPO versus the mature dimeric MPO and the functional role of the propeptide. Here we have presented the first and high resolution (at 1.25 Å) crystal structure of proMPO and its solution structure obtained by small-angle X-ray scattering. Promyeloperoxidase hosts five occupied glycosylation sites and six intrachain cystine bridges with Cys-158 of the very flexible N-terminal propeptide being covalently linked to Cys-319 and thereby hindering homodimerization. Furthermore, the structure revealed (i) the binding site of proMPO-processing proconvertase, (ii) the structural motif for subsequent cleavage to the heavy and light chains of mature MPO protomers, and (iii) three covalent bonds between heme and the protein. Studies of the mutants C158A, C319A, and C158A/C319A demonstrated significant differences from the wild-type protein, including diminished enzymatic activity and prevention of export to the Golgi due to prolonged association with the chaperone calnexin. These structural and functional findings provide novel insights into MPO biosynthesis and processing.


Assuntos
Precursores Enzimáticos , Peroxidase , Substituição de Aminoácidos , Calnexina/química , Calnexina/genética , Calnexina/metabolismo , Cristalografia por Raios X , Ativação Enzimática/fisiologia , Precursores Enzimáticos/biossíntese , Precursores Enzimáticos/química , Precursores Enzimáticos/genética , Complexo de Golgi/enzimologia , Complexo de Golgi/genética , Células HEK293 , Humanos , Células K562 , Mutação de Sentido Incorreto , Peroxidase/biossíntese , Peroxidase/química , Peroxidase/genética , Domínios Proteicos
16.
J Biol Chem ; 292(11): 4583-4592, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28154175

RESUMO

Human peroxidasin 1 is a homotrimeric multidomain peroxidase that is secreted to the extracellular matrix. The heme enzyme was shown to release hypobromous acid that mediates the formation of specific covalent sulfilimine bonds to reinforce collagen IV in basement membranes. Maturation by proteolytic cleavage is known to activate the enzyme. Here, we present the first multimixing stopped-flow study on a fully functional truncated variant of human peroxidasin 1 comprising four immunoglobulin-like domains and the catalytically active peroxidase domain. The kinetic data unravel the so far unknown substrate specificity and mechanism of halide oxidation of human peroxidasin 1. The heme enzyme is shown to follow the halogenation cycle that is induced by the rapid H2O2-mediated oxidation of the ferric enzyme to the redox intermediate compound I. We demonstrate that chloride cannot act as a two-electron donor of compound I, whereas thiocyanate, iodide, and bromide efficiently restore the ferric resting state. We present all relevant apparent bimolecular rate constants, the spectral signatures of the redox intermediates, and the standard reduction potential of the Fe(III)/Fe(II) couple, and we demonstrate that the prosthetic heme group is post-translationally modified and cross-linked with the protein. These structural features provide the basis of human peroxidasin 1 to act as an effective generator of hypobromous acid, which mediates the formation of covalent cross-links in collagen IV.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Peroxidase/metabolismo , Brometos/metabolismo , Domínio Catalítico , Cloretos/metabolismo , Colágeno Tipo IV/metabolismo , Proteínas da Matriz Extracelular/química , Compostos Férricos/metabolismo , Halogenação , Humanos , Peróxido de Hidrogênio/metabolismo , Iodetos/metabolismo , Cinética , Oxirredução , Peroxidase/química , Domínios Proteicos , Especificidade por Substrato , Tiocianatos/metabolismo , Peroxidasina
17.
Arch Biochem Biophys ; 640: 27-36, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29331688

RESUMO

Coproheme decarboxylases (ChdCs) are enzymes responsible for the catalysis of the terminal step in the coproporphyrin-dependent heme biosynthesis pathway. Phylogenetic analyses confirm that the gene encoding for ChdCs is widespread throughout the bacterial world. It is found in monoderm bacteria (Firmicutes, Actinobacteria), diderm bacteria (e. g. Nitrospirae) and also in Archaea. In order to test phylogenetic prediction ChdC representatives from all clades were expressed and examined for their coproheme decarboxylase activity. Based on available biochemical data and phylogenetic analyses a sequence motif (-Y-P-M/F-X-K/R-) is defined for ChdCs. We show for the first time that in diderm bacteria an active coproheme decarboxylase is present and that the archaeal ChdC homolog from Sulfolobus solfataricus is inactive and its physiological role remains elusive. This shows the limitation of phylogenetic prediction of an enzymatic activity, since the identified sequence motif is equally conserved across all previously defined clades.


Assuntos
Carboxiliases/química , Carboxiliases/classificação , Coproporfirinas/química , Sequência de Aminoácidos , Carboxiliases/genética , Catálise , Filogenia , Sulfolobus solfataricus/enzimologia
18.
Arch Biochem Biophys ; 643: 14-23, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29462588

RESUMO

Four heme peroxidase superfamilies arose independently in evolution. Only in the peroxidase-cyclooxygenase superfamily the prosthetic group is posttranslationally modified (PTM). As a consequence these peroxidases can form one, two or three covalent bonds between heme substituents and the protein. This may include ester bonds between heme 1- and 5-methyl groups and glutamate and aspartate residues as well as a sulfonium ion link between the heme 2-vinyl substituent and a methionine. Here the phylogeny and physiological roles of representatives of this superfamily, their occurrence in all kingdoms of life, the relevant sequence motifs for definite identification and the available crystal structures are presented. We demonstrate the autocatalytic posttranslational maturation process and the impact of the covalent links on spectral and redox properties as well as on catalysis, including Compound I formation and reduction by one- and two-electron donors. Finally, we discuss the evolutionary advantage of these PTMs with respect to the proposed physiological functions of the metalloenzymes that range from antimicrobial defence in innate immunity to extracellular matrix formation and hormone biosynthesis.


Assuntos
Biocatálise , Heme/metabolismo , Peroxidases/química , Peroxidases/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Animais , Sequência Conservada , Humanos
19.
J Enzyme Inhib Med Chem ; 33(1): 1529-1536, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30284485

RESUMO

There is an increasing interest in developing novel eosinophil peroxidase (EPO) inhibitors, in order to provide new treatment strategies against chronic inflammatory and neurodegenerative diseases caused by eosinophilic disorder. Within this study, a ligand-based pharmacophore model for EPO inhibitors was generated and used for in silico screening of large 3 D molecular structure databases, containing more than 4 million compounds. Hits obtained were clustered and a total of 277 compounds were selected for biological assessment. A class of 2-(phenyl)amino-aceto-hydrazides with different substitution pattern on the aromatic ring was found to contain the most potent EPO inhibitors, exhibiting IC50 values down to 10 nM. The generated pharmacophore model therefore, represents a valuable tool for the selection of compounds for biological testing. The compounds identified as potent EPO inhibitors will serve to initiate a hit to lead and lead optimisation program for the development of new therapeutics against eosinophilic disorders.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Peroxidase de Eosinófilo/antagonistas & inibidores , Hidrazinas/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Peroxidase de Eosinófilo/metabolismo , Humanos , Hidrazinas/síntese química , Hidrazinas/química , Cinética , Estrutura Molecular , Relação Estrutura-Atividade
20.
Biochemistry ; 56(34): 4525-4538, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28762722

RESUMO

The existence of covalent heme to protein bonds is the most striking structural feature of mammalian peroxidases, including myeloperoxidase and lactoperoxidase (LPO). These autocatalytic posttranslational modifications (PTMs) were shown to strongly influence the biophysical and biochemical properties of these oxidoreductases. Recently, we reported the occurrence of stable LPO-like counterparts with two heme to protein ester linkages in bacteria. This study focuses on the model wild-type peroxidase from the cyanobacterium Lyngbya sp. PCC 8106 (LspPOX) and the mutants D109A, E238A, and D109A/E238A that could be recombinantly produced as apoproteins in Escherichia coli, fully reconstituted to the respective heme b proteins, and posttranslationally modified by hydrogen peroxide. This for the first time allows not only a direct comparison of the catalytic properties of the heme b and PTM forms but also a study of the impact of D109 and E238 on PTM and catalysis, including Compound I formation and the two-electron reduction of Compound I by bromide, iodide, and thiocyanate. It is demonstrated that both heme to protein ester bonds can form independently and that elimination of E238, in contrast to exchange of D109, does not cause significant structural rearrangements or changes in the catalytic properties neither in heme b nor in the PTM form. The obtained findings are discussed with respect to published structural and functional data of human peroxidases.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/enzimologia , Heme/metabolismo , Peroxidase/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Catálise , Heme/química , Heme/genética , Ligantes , Peroxidase/química , Peroxidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA