Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Development ; 145(10)2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29695611

RESUMO

Adult C. elegans germline stem cells (GSCs) and mouse embryonic stem cells (mESCs) exhibit a non-canonical cell cycle structure with an abbreviated G1 phase and phase-independent expression of Cdk2 and cyclin E. Mechanisms that promote the abbreviated cell cycle remain unknown, as do the consequences of not maintaining an abbreviated cell cycle in these tissues. In GSCs, we discovered that loss of gsk-3 results in reduced GSC proliferation without changes in differentiation or responsiveness to GLP-1/Notch signaling. We find that DPL-1 transcriptional activity inhibits CDK-2 mRNA accumulation in GSCs, which leads to slower S-phase entry and progression. Inhibition of dpl-1 or transgenic expression of CDK-2 via a heterologous germline promoter rescues the S-phase entry and progression defects of the gsk-3 mutants, demonstrating that transcriptional regulation rather than post-translational control of CDK-2 establishes the abbreviated cell cycle structure in GSCs. This highlights an inhibitory cascade wherein GSK-3 inhibits DPL-1 and DPL-1 inhibits cdk-2 transcription. Constitutive GSK-3 activity through this cascade maintains an abbreviated cell cycle structure to permit the efficient proliferation of GSCs necessary for continuous tissue output.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/embriologia , Quinase 2 Dependente de Ciclina/biossíntese , Células Germinativas/citologia , Quinase 3 da Glicogênio Sintase/metabolismo , Fase S/fisiologia , Células-Tronco/citologia , Fatores de Transcrição/genética , Animais , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciação Celular/genética , Proliferação de Células/genética , Ciclina E/biossíntese , Quinase 2 Dependente de Ciclina/genética , Quinase 3 da Glicogênio Sintase/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Receptores Notch/metabolismo , Transdução de Sinais/genética , Transcrição Gênica/genética
2.
J Cell Sci ; 124(Pt 17): 2903-13, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21878498

RESUMO

Mutations in the Caenorhabditis elegans separase gene, sep-1, are embryonic lethal. Newly fertilized mutant embryos have defects in polar body extrusion, fail to undergo cortical granule exocytosis, and subsequently fail to complete cytokinesis. Chromosome nondisjunction during the meiotic divisions is readily apparent after depletion of sep-1 by RNAi treatment, but much less so in hypomorphic mutant embryos. To identify factors that influence the activity of separase in cortical granule exocytosis and cytokinesis, we carried out a genetic suppressor screen. A mutation in the protein phosphatase 5 (pph-5) gene was identified as an extragenic suppressor of sep-1. This mutation suppressed the phenotypes of hypomorphic separase mutants but not RNAi depleted animals. Depletion of pph-5 caused no phenotypes on its own, but was effective in restoring localization of mutant separase to vesicles and suppressing cortical granule exocytosis and cytokinesis phenotypes. The identification of PPH-5 as a suppressor of separase suggests that a new phospho-regulatory pathway plays an important role in regulating anaphase functions of separase.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Endopeptidases/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Alelos , Animais , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Citocinese/genética , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/metabolismo , Endopeptidases/genética , Exocitose/fisiologia , Mutação , Proteínas Nucleares/biossíntese , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Fosfoproteínas Fosfatases/biossíntese , Fosfoproteínas Fosfatases/deficiência , Fosfoproteínas Fosfatases/genética , Separase
3.
PLoS Genet ; 6(11): e1001218, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21124864

RESUMO

The master regulators of the cell cycle are cyclin-dependent kinases (Cdks), which influence the function of a myriad of proteins via phosphorylation. Mitotic Cdk1 is activated by A-type, as well as B1- and B2-type, cyclins. However, the role of a third, conserved cyclin B family member, cyclin B3, is less well defined. Here, we show that Caenorhabditis elegans CYB-3 has essential and distinct functions from cyclin B1 and B2 in the early embryo. CYB-3 is required for the timely execution of a number of cell cycle events including completion of the MII meiotic division of the oocyte nucleus, pronuclear migration, centrosome maturation, mitotic chromosome condensation and congression, and, most strikingly, progression through the metaphase-to-anaphase transition. Our experiments reveal that the extended metaphase delay in CYB-3-depleted embryos is dependent on an intact spindle assembly checkpoint (SAC) and results in salient defects in the architecture of holocentric metaphase chromosomes. Furthermore, genetically increasing or decreasing dynein activity results in the respective suppression or enhancement of CYB-3-dependent defects in cell cycle progression. Altogether, these data reveal that CYB-3 plays a unique, essential role in the cell cycle including promoting mitotic dynein functionality and alleviation of a SAC-dependent block in anaphase chromosome segregation.


Assuntos
Anáfase , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Segregação de Cromossomos , Ciclina B/metabolismo , Fuso Acromático/metabolismo , Animais , Caenorhabditis elegans/embriologia , Núcleo Celular/metabolismo , Dineínas do Citoplasma/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Deleção de Genes , Cinetocoros/metabolismo , Metáfase , Interferência de RNA , Fatores de Tempo
4.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37206989

RESUMO

Caenorhabditis elegans gene sart-3 was first identified as the homolog of human SART3 ( S quamous cell carcinoma A ntigen R ecognized by T -cells 3). In humans, expression of SART3 is associated with squamous cell carcinoma, thus most of the studies focus on its potential role as a target of cancer immunotherapy (Shichijo et al. 1998; Yang et al. 1999). Furthermore, SART3 is also known as Tip110 (Liu et al. 2002; Whitmill et al. 2016) in the context of HIV virus host activation pathway. Despite these disease related studies, the molecular function of this protein was not revealed until the yeast homolog was identified as spliceosome U4/U6 snRNP recycling factor (Bell et al. 2002). The function of SART3 in development, however, remains unknown. Here we report that the C. elegans sart-3 mutant hermaphrodites exhibit a Mog ( M asculinization O f the G ermline) phenotype in adulthood suggesting that sart-3 normally functions to regulate the switch from spermatogenic to oogenic gametic sex.

5.
Nat Cell Biol ; 19(3): 252-257, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28166192

RESUMO

In 1893 August Weismann proposed that information about the environment could not pass from somatic cells to germ cells, a hypothesis now known as the Weismann barrier. However, recent studies have indicated that parental exposure to environmental stress can modify progeny physiology and that parental stress can contribute to progeny disorders. The mechanisms regulating these phenomena are poorly understood. We report that the nematode Caenorhabditis elegans can protect itself from osmotic stress by entering a state of arrested development and can protect its progeny from osmotic stress by increasing the expression of the glycerol biosynthetic enzyme GPDH-2 in progeny. Both of these protective mechanisms are regulated by insulin-like signalling: insulin-like signalling to the intestine regulates developmental arrest, while insulin-like signalling to the maternal germline regulates glycerol metabolism in progeny. Thus, there is a heritable link between insulin-like signalling to the maternal germline and progeny metabolism and gene expression. We speculate that analogous modulation of insulin-like signalling to the germline is responsible for effects of the maternal environment on human diseases that involve insulin signalling, such as obesity and type-2 diabetes.


Assuntos
Caenorhabditis elegans/fisiologia , Células Germinativas/metabolismo , Insulina/metabolismo , Pressão Osmótica , Transdução de Sinais , Estresse Fisiológico , Animais , Infecções Bacterianas/patologia , Caenorhabditis elegans/microbiologia , Intestinos/embriologia , Sistema de Sinalização das MAP Quinases , Inanição
6.
Dev Cell ; 31(5): 614-28, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25490268

RESUMO

Signaling pathways and small RNAs direct diverse cellular events, but few examples are known of defined signaling pathways directly regulating small RNA biogenesis. We show that ERK phosphorylates Dicer on two conserved residues in its RNase IIIb and double-stranded RNA (dsRNA)-binding domains and that phosphorylation of these residues is necessary and sufficient to trigger Dicer's nuclear translocation in worms, mice, and human cells. Phosphorylation of Dicer on either site inhibits Dicer function in the female germline and dampens small RNA repertoire. Our data demonstrate that ERK phosphorylates and inhibits Dicer during meiosis I for oogenesis to proceed normally in Caenorhabditis elegans and that this inhibition is released before fertilization for embryogenesis to proceed normally. The conserved Dicer residues, their phosphorylation by ERK, and the consequences of the resulting modifications implicate an ERK-Dicer nexus as a fundamental component of the oocyte-to-embryo transition and an underlying mechanism coupling extracellular cues to small RNA production.


Assuntos
Caenorhabditis elegans/enzimologia , Sistema de Sinalização das MAP Quinases/fisiologia , Oócitos/metabolismo , RNA de Cadeia Dupla/metabolismo , Ribonuclease III/metabolismo , Animais , Sequência de Bases/fisiologia , Caenorhabditis elegans/embriologia , Camundongos , Oogênese/fisiologia , Fosforilação
7.
PLoS One ; 4(10): e7450, 2009 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-19826475

RESUMO

The germinal center kinases (GCK) constitute a large, highly conserved family of proteins that has been implicated in a wide variety of cellular processes including cell growth and proliferation, polarity, migration, and stress responses. Although diverse, these functions have been attributed to an evolutionarily conserved role for GCKs in the activation of ERK, JNK, and p38 MAP kinase pathways. In addition, multiple GCKs from different species promote apoptotic cell death. In contrast to these paradigms, we found that a C. elegans GCK, GCK-1, functions to inhibit MAP kinase activation and apoptosis in the C. elegans germline. In the absence of GCK-1, a specific MAP kinase isoform is ectopically activated and oocytes undergo abnormal development. Moreover, GCK-1- deficient animals display a significant increase in germ cell death. Our results suggest that individual germinal center kinases act in mechanistically distinct ways and that these functions are likely to depend on organ- and developmental-specific contexts.


Assuntos
Apoptose , Proteínas de Caenorhabditis elegans/metabolismo , Regulação Enzimológica da Expressão Gênica , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Caenorhabditis elegans , Proliferação de Células , Citoplasma/metabolismo , Ativação Enzimática , Feminino , Quinases do Centro Germinativo , Masculino , Modelos Biológicos , Oócitos/metabolismo , Estrutura Terciária de Proteína , Interferência de RNA
8.
Dev Cell ; 15(4): 603-16, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18854144

RESUMO

The Aurora B kinase is the enzymatic core of the chromosomal passenger complex, which is a critical regulator of mitosis. To identify novel regulators of Aurora B, we performed a genome-wide screen for suppressors of a temperature-sensitive lethal allele of the C. elegans Aurora B kinase AIR-2. This screen uncovered a member of the Afg2/Spaf subfamily of Cdc48-like AAA ATPases as an essential inhibitor of AIR-2 stability and activity. Depletion of CDC-48.3 restores viability to air-2 mutant embryos and leads to abnormally high AIR-2 levels at the late telophase/G1 transition. Furthermore, CDC-48.3 binds directly to AIR-2 and inhibits its kinase activity from metaphase through telophase. While canonical p97/Cdc48 proteins have been assigned contradictory roles in the regulation of Aurora B, our results identify a member of the Afg2/Spaf AAA ATPases as a critical in vivo inhibitor of this kinase during embryonic development.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Caenorhabditis elegans/fisiologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Adenosina Trifosfatases/genética , Alelos , Substituição de Aminoácidos , Animais , Aurora Quinase B , Aurora Quinases , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Glutationa Transferase/metabolismo , Lisina/metabolismo , Mitose , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Interferência de RNA , Proteínas Recombinantes/metabolismo , Temperatura , Proteína com Valosina
9.
Genesis ; 34(4): 244-50, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12434334

RESUMO

Many kinases are required for progression through the eukaryotic cell cycle. The Aurora kinases comprise a highly conserved family of serine/threonine kinases that have been implicated in chromosome segregation and cytokinesis in several organisms. We have isolated a sterile Caenorhabditis elegans mutant in which the majority of the locus encoding the Aurora A kinase air-1 has been deleted. Complementation tests with previously isolated sterile mutations in the air-1 genetic interval demonstrate that the air-1 and let-412 loci are identical. Previous analysis of AIR-1 function by RNA-mediated interference (RNAi) has shown that AIR-1 is required for embryonic survival. The characterization of the three sterile air-1 mutant alleles described here extends these studies by revealing an allelic series that differentially affects postembryonic cell divisions and germline development.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Animais , Aurora Quinase A , Aurora Quinases , Caenorhabditis elegans/genética , Divisão Celular , Sistema Nervoso Central/citologia , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/citologia , Células Germinativas/metabolismo , Humanos , Dados de Sequência Molecular , Mutação , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Homologia de Sequência de Aminoácidos , Vulva/crescimento & desenvolvimento , Vulva/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA