RESUMO
Penile cancer (PeC) is a rare disease, and no prognostic biomarkers have been adopted in clinical practice yet. The objective of the present study was to identify differentially expressed miRNAs (DEmiRs) and genes (DEGs) as potential biomarkers for lymph node metastasis and other prognostic factors in PeC. Tumor samples were prospectively obtained from 24 patients with squamous cell carcinoma of the penis. miRNA microarray analysis was performed comparing tumors from patients with inguinal lymph node metastatic and localized disease, and the results were validated by qRT-PCR. Eighty-three gene expression levels were also compared between groups through qRT-PCR. Moreover, DEmiRs and DEGs expression levels were correlated with clinicopathological variables, cancer-specific (CSS), and overall survival (OS). TAC software, TM4 MeV 4.9 software, SPSS v.25.0, and R software v.4.0.2 were used for statistical analyses. We identified 21 DEmiRs in microarray analysis, and seven were selected for validation. miR-744-5p and miR-421 were overexpressed in tissue samples of metastatic patients, and high expression of miR-421 was also associated with lower OS. We found seven DEGs (CCND1, EGFR, ENTPD5, HOXA10, IGF1R, MYC, and SNAI2) related to metastatic disease. A significant association was found between increased MMP1 expression and tumor size, grade, pathological T stage, and perineural invasion. Other genes were also associated with clinicopathological variables, CSS and OS. Finally, we found changes in mRNA-miRNA regulation that contribute to understanding the mechanisms involved in tumor progression. Therefore, we identified miRNA and mRNA expression profiles as potential biomarkers associated with lymph node metastasis and prognosis in PeC, in addition to disruption in mRNA-miRNA regulation during disease progression.
Assuntos
Carcinoma de Células Escamosas , MicroRNAs , Neoplasias Penianas , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Linfática , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Penianas/genética , Neoplasias Penianas/patologia , RNA Mensageiro/genéticaRESUMO
The chronic inflammatory microenvironment and immune cell dysfunction have been described as critical components for gastric tumor initiation and progression. The diffuse subtype is related to poor clinical outcomes, pronounced inflammation, and the worst prognosis. We investigated the association of polymorphisms in inflammatory response-related genes (COX-2, OGG1, TNFB, TNFA, HSPA1L, HSPA1B, VEGFA, IL17F, LGALS3, PHB, and TP53) with gastric cancer susceptibility, progression and prognosis in a Brazilian sample, focusing on the diffuse subtype. We also performed the analysis regarding the total sample of cases (not stratified for tumor subtypes), allowing the comparison between the findings. We further investigated the polymorphisms in linkage disequilibrium and performed haplotype association analyses. In the case-control study, rs1042522 (TP53) was associated with a stronger risk for developing gastric cancer in the sample stratified for diffuse subtype patients when compared to the risk observed for the total cases; CTC haplotype (rs699947/rs833061/rs2010963 VEGFA) was associated with risk while rs699947 was associated with protection for gastric malignancy in the total sample. Regarding the associations with the clinicopathological features of gastric cancer, for the diffuse subtype we found that rs699947 and rs833061 (VEGFA) were associated with outcomes related to a worse progression while rs5275 (COX-2), rs909253 (TNFB), and rs2227956 (HSPA1L) were associated to a better progression of the disease. In the total sample, rs699947 and rs833061 (VEGFA), rs4644 (LGALS3), and rs1042522 (TP53) were able to predict a worse progression while rs5275 (COX-2), rs2227956 (HSPA1L), and rs3025039 (VEGFA) a better progression. Besides, rs909253 (TNFB) predicted protection for the overall and disease-free survivals for gastric cancer. In conclusion, these results helped us to clarify the potential role of these polymorphisms in genes involved in the modulation of the inflammatory response in the pathogenesis of gastric cancer.
RESUMO
Gestational exposure to air pollution is associated with negative outcomes in newborns and children. In a previous study, we demonstrated a synergistic negative effect of pre- and postnatal exposure to PM2.5 on lung development in mice. However, the means by which air pollution affects development of the lung have not yet been identified. In this study, we exposed pregnant BALB/c mice and their offspring to concentrated urban PM2.5 (from São Paulo, Brazil; target dose 600⯵g/m3 for 1â¯h daily). Exposure was started on embryonic day 5.5 (E5.5, time of placental implantation). Lung tissue of fetuses and offspring was submitted to stereological and transcriptomic analyses at E14.5 (pseudoglandular stage of lung development), E18.5 (saccular stage) and P40 (postnatal day 40, alveolarized lung). Additionally, lung function and cellularity of bronchoalveolar lavage (BAL) fluid were studied in offspring animals at P40. Compared to control animals that were exposed to filtered air throughout gestation and postnatal life, PM-exposed mice exhibited higher lung elastance and a lower alveolar number at P40 whilst the total lung volume and cellularity of BAL fluid were not affected. Glandular and saccular structures of fetal lungs were not altered upon gestational exposure; transcriptomic signatures, however, showed changes related to DNA damage and its regulation, inflammation and regulation of cell proliferation. A differential expression was validated at E14.5 for the candidates Sox8, Angptl4 and Gas1. Our data substantiate the in utero biomolecular effect of gestational exposure to air pollution and provide first-time stereological evidence that pre- and early life-postnatal exposure compromise lung development, leading to a reduced number of alveoli and an impairment of lung function in the adult mouse.
Assuntos
Poluição do Ar/efeitos adversos , Pulmão/fisiopatologia , Material Particulado/efeitos adversos , Material Particulado/análise , Alvéolos Pulmonares/patologia , Proteína 4 Semelhante a Angiopoietina/biossíntese , Animais , Brasil , Proteínas de Ciclo Celular/biossíntese , Dano ao DNA/efeitos dos fármacos , Elasticidade/fisiologia , Feminino , Proteínas Ligadas por GPI/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Fatores de Transcrição SOXE/biossíntese , Fatores de TempoRESUMO
BACKGROUND/AIMS: Genetic imbalances are responsible for many cases of short stature of unknown etiology. This study aims to identify recurrent pathogenic copy number variants (CNVs) in patients with syndromic short stature of unknown cause. METHODS: We selected 229 children with short stature and dysmorphic features, developmental delay, and/or intellectual disability, but without a recognized syndrome. All patients were evaluated by chromosomal microarray (array-based comparative genomic hybridization/single nucleotide polymorphism array). Additionally, we searched databases and previous studies to recover recurrent pathogenic CNVs associated with short stature. RESULTS: We identified 32 pathogenic/probably pathogenic CNVs in 229 patients. By reviewing the literature, we selected 4 previous studies which evaluated CNVs in cohorts of patients with short stature. Taken together, there were 671 patients with short stature of unknown cause evaluated by chromosomal microarray. Pathogenic/probably pathogenic CNVs were identified in 87 patients (13%). Seven recurrent CNVs, 22q11.21, 15q26, 1p36.33, Xp22.33, 17p13.3, 1q21.1, 2q24.2, were observed. They are responsible for about 40% of all pathogenic/probably pathogenic genomic imbalances found in short stature patients of unknown cause. CONCLUSION: CNVs seem to play a significant role in patients with short stature. Chromosomal microarray should be used as a diagnostic tool for evaluation of growth disorders, especially for syndromic short stature of unknown cause.