Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Theor Appl Genet ; 137(9): 213, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39222129

RESUMO

Soil-borne cereal mosaic virus (SBCMV), the causative agent of wheat mosaic, is a Furovirus challenging wheat production all over Europe. Differently from bread wheat, durum wheat shows greater susceptibility and stronger yield penalties, so identification and genetic characterization of resistance sources are major targets for durum genetics and breeding. The Sbm1 locus providing high level of resistance to SBCMV was mapped in bread wheat to the 5DL chromosome arm (Bass in Genome 49:1140-1148, 2006). This excluded the direct use of Sbm1 for durum wheat improvement. Only one major QTL has been mapped in durum wheat, namely QSbm.ubo-2B, on the 2BS chromosome region coincident with Sbm2, already known in bread wheat as reported (Bayles in HGCA Project Report, 2007). Therefore, QSbm.ubo-2B = Sbm2 is considered a pillar for growing durum in SBCMV-affected areas. Herein, we report the fine mapping of Sbm2 based on bi-parental mapping and GWAS, using the Infinium 90 K SNP array and high-throughput KASP®. Fine mapping pointed out a critical haploblock of 3.2 Mb defined by concatenated SNPs successfully converted to high-throughput KASP® markers coded as KUBO. The combination of KUBO-27, wPt-2106-ASO/HRM, KUBO-29, and KUBO-1 allows unequivocal tracing of the Sbm2-resistant haplotype. The interval harbors 52 high- and 41 low-confidence genes, encoding 17 cytochrome p450, three receptor kinases, two defensins, and three NBS-LRR genes. These results pave the way for Sbm2 positional cloning. Importantly, the development of Sbm2 haplotype tagging KASP® provides a valuable case study for improving efficacy of the European variety testing system and, ultimately, the decision-making process related to varietal characterization and choice.


Assuntos
Mapeamento Cromossômico , Resistência à Doença , Doenças das Plantas , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum , Triticum/genética , Triticum/virologia , Doenças das Plantas/virologia , Doenças das Plantas/genética , Resistência à Doença/genética , Fenótipo , Cromossomos de Plantas/genética , Vírus do Mosaico/patogenicidade , Genes de Plantas , Marcadores Genéticos
2.
Dev Cell ; 59(3): 295-307, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38320484

RESUMO

A balanced gene complement is crucial for proper cell function. Aneuploidy, the condition of having an imbalanced chromosome set, alters the stoichiometry of gene copy numbers and protein complexes and has dramatic consequences at the cellular and organismal levels. In humans, aneuploidy is associated with different pathological conditions including cancer, microcephaly, mental retardation, miscarriages, and aging. Over the last century, Drosophila has provided a valuable system for studying the consequences of systemic aneuploidies. More recently, it has contributed to the identification and molecular dissection of aneuploidy-induced cellular behaviors and their impact at the tissue and organismal levels. In this perspective, we review this active field of research, first by comparing knowledge from yeast, mouse, and human cells, then by highlighting the contributions of Drosophila. The aim of these discussions was to further our understanding of the functional interplay between aneuploidy, cell physiology, and tissue homeostasis in human development and disease.


Assuntos
Aneuploidia , Drosophila , Humanos , Animais , Camundongos , Dosagem de Genes , Fenômenos Fisiológicos Celulares , Saccharomyces cerevisiae
3.
F1000Res ; 11: 1162, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38249119

RESUMO

Background: The "drive by wire" mechanism for managing the throttle is not applied to every modern motorcycle, but it is often managed through a steel wire. Here, there is a cam on the throttle control. Its shape allows the throttle opening to be faster or slower and its angle of rotation, required for full opening, to be greater or less. The maximum angle a rider's wrist can withstand depends on numerous musculoskeletal mobility factors, often limited by falls or surgery. Methods: Using a Progrip knob with interchangeable cams allows the customization of a special cam profile, to ensure the best engine response to throttle rotation and ergonomics for the rider. The use of FEA software and lattice structures, allows to realize a lightweight and efficient design, targeted for fabrication with additive manufacturing technologies. Results: The cam was manufactured by exploiting MSLA technology. Finally, a dimensional inspection procedure was performed before assembly. The main result is to have obtained a lighter and cheaper component than the original. Conclusions: This study has allowed the design of a mechanical component consisting of innovative shape, light weight, and ergonomics. Furthermore, it demonstrates the effectiveness in the use of lattice structures to enable weight optimization of a component while minimizing the increase in its compliance.


Assuntos
Motocicletas , Veículos Off-Road , Comércio , Software , Tecnologia
4.
Heliyon ; 8(10): e11136, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36339988

RESUMO

Fused Deposition Modelling (FDM) technology allows to choose a large variety of materials and it is widely used by companies and individuals nowadays. The cost effectiveness of rapid prototyping is achievable via FDM, that makes this technology useful for research and innovation. The application of 3D printing to aid production is the most common approach. Moreover, the use of 3D printing in prototypes result in a waste of material since no reuse is considered. In the following manuscript, this technology is applied to mould fabrication by achieving a low surface roughness at a modest cost compared to conventional manufacturing methods. Moreover, the possibility to use a combination of thermoplastic materials is analysed by examination of the CAD model optimized for Additive Manufacturing (AM) from scratch and was verified using metrology tools. Several moulds were finally built and applied to the specific case study of carbon fibre laminated components. This manuscript aims to analyse the manufacturing process by comparing the mould surface geometry before and after the smoothing process. The achieved tolerance between the produced moulds is ±0.05 mm that ensures the repeatability of the process from an industrial point of view; whilst the deviation between CAD and mould is ±0.2 mm. To combine an accurate FDM process together with chemical smoothing proved to be a powerful strategy to produce high quality components that can be inserted in the production process by means of traditional manufacturing techniques. This will aid to reduce the cost of standard manufacturing for low production batches and prototypes of carbon fibre composites.

5.
Polymers (Basel) ; 13(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34685314

RESUMO

Additive manufacturing processes have evolved considerably in the past years, growing into a wide range of products through the use of different materials depending on its application sectors. Nevertheless, the fused deposition modelling (FDM) technique has proven to be an economically feasible process turning additive manufacture technologies from consumer production into a mainstream manufacturing technique. Current advances in the finite element method (FEM) and the computer-aided engineering (CAE) technology are unable to study three-dimensional (3D) printed models, since the final result is highly dependent on processing and environment parameters. Because of that, an in-depth understanding of the printed geometrical mesostructure is needed to extend FEM applications. This study aims to generate a homogeneous structural element that accurately represents the behavior of FDM-processed materials, by means of a representative volume element (RVE). The homogenization summarizes the main mechanical characteristics of the actual 3D printed structure, opening new analysis and optimization procedures. Moreover, the linear RVE results can be used to further analyze the in-deep behavior of the FDM unit cell. Therefore, industries could perform a feasible engineering analysis of the final printed elements, allowing the FDM technology to become a mainstream, low-cost manufacturing process in the near future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA